{"title":"基于SPH的颗粒材料高分辨率模拟","authors":"Markus Ihmsen, Arthur Wahl, M. Teschner","doi":"10.2312/PE/vriphys/vriphys12/053-060","DOIUrl":null,"url":null,"abstract":"We present an efficient framework for simulating granular material with high visual detail. Our model solves the computationally and numerically critical forces on a coarsely sampled particle simulation. We incorporate a new frictional boundary force into an existing continuum-based method which enables realistic interactions and a more robust simulation. Visual realism is achieved by coupling a set of highly resolved particles with the base simulation at low computational costs. Thereby, visual details can be added which are not resolved by the base simulation.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"High-Resolution Simulation of Granular Material with SPH\",\"authors\":\"Markus Ihmsen, Arthur Wahl, M. Teschner\",\"doi\":\"10.2312/PE/vriphys/vriphys12/053-060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an efficient framework for simulating granular material with high visual detail. Our model solves the computationally and numerically critical forces on a coarsely sampled particle simulation. We incorporate a new frictional boundary force into an existing continuum-based method which enables realistic interactions and a more robust simulation. Visual realism is achieved by coupling a set of highly resolved particles with the base simulation at low computational costs. Thereby, visual details can be added which are not resolved by the base simulation.\",\"PeriodicalId\":446363,\"journal\":{\"name\":\"Workshop on Virtual Reality Interactions and Physical Simulations\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Virtual Reality Interactions and Physical Simulations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/PE/vriphys/vriphys12/053-060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Virtual Reality Interactions and Physical Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PE/vriphys/vriphys12/053-060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Resolution Simulation of Granular Material with SPH
We present an efficient framework for simulating granular material with high visual detail. Our model solves the computationally and numerically critical forces on a coarsely sampled particle simulation. We incorporate a new frictional boundary force into an existing continuum-based method which enables realistic interactions and a more robust simulation. Visual realism is achieved by coupling a set of highly resolved particles with the base simulation at low computational costs. Thereby, visual details can be added which are not resolved by the base simulation.