基于邻域标准偏差的PET晶体位置图生成算法

Qingyang Wei, Xingdong Li, Tianyu Ma, Shi Wang, T. Dai, Peng Fan, Yu Yunhan, Yongjie Jin, Yaqiang Liu
{"title":"基于邻域标准偏差的PET晶体位置图生成算法","authors":"Qingyang Wei, Xingdong Li, Tianyu Ma, Shi Wang, T. Dai, Peng Fan, Yu Yunhan, Yongjie Jin, Yaqiang Liu","doi":"10.1109/NSSMIC.2013.6829273","DOIUrl":null,"url":null,"abstract":"Positron emission tomography (PET) is typically based on 2-D array of scintillation crystals coupled to photon detector and decoded by the Anger-logic. The decoded result is a pseudo-position of the gamma interaction. A crystal position map (CPM) generated from the flood histogram is used as a crystal look-up table (CLT) to assign each pseudo-position to a specific crystal. It is crucial that the accuracy of CPMs affects the detector's spatial resolution. In this paper, we developed a neighborhood standard deviation (NSD) based algorithm for generating CPM. We first calculated the NSD of each pixel in the flood histogram including the x and y directions. NSD maps have strips whose peaks highly correspond to the valley of the flood histogram. The peaks were identified by fitting the profiles of NSD to Gaussian mixture functions using nonlinear least-square method. Using the peaks, the CPM was generated by a scan line algorithm. The proposed algorithm was applied in an animal PET system. 115 of 120 detector blocks can be automatically segmented in ~1000 s. A hot rod phantom experiment was performed, and the reconstruction results showed that the one with CPM generated by NSD based automatic method achieved higher spatial resolution than the one with CPM generated by manual segmentation. We concluded that the proposed method is fast, robust and high accuracy.","PeriodicalId":246351,"journal":{"name":"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A neighborhood standard deviation based algorithm for generating PET crystal position maps\",\"authors\":\"Qingyang Wei, Xingdong Li, Tianyu Ma, Shi Wang, T. Dai, Peng Fan, Yu Yunhan, Yongjie Jin, Yaqiang Liu\",\"doi\":\"10.1109/NSSMIC.2013.6829273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positron emission tomography (PET) is typically based on 2-D array of scintillation crystals coupled to photon detector and decoded by the Anger-logic. The decoded result is a pseudo-position of the gamma interaction. A crystal position map (CPM) generated from the flood histogram is used as a crystal look-up table (CLT) to assign each pseudo-position to a specific crystal. It is crucial that the accuracy of CPMs affects the detector's spatial resolution. In this paper, we developed a neighborhood standard deviation (NSD) based algorithm for generating CPM. We first calculated the NSD of each pixel in the flood histogram including the x and y directions. NSD maps have strips whose peaks highly correspond to the valley of the flood histogram. The peaks were identified by fitting the profiles of NSD to Gaussian mixture functions using nonlinear least-square method. Using the peaks, the CPM was generated by a scan line algorithm. The proposed algorithm was applied in an animal PET system. 115 of 120 detector blocks can be automatically segmented in ~1000 s. A hot rod phantom experiment was performed, and the reconstruction results showed that the one with CPM generated by NSD based automatic method achieved higher spatial resolution than the one with CPM generated by manual segmentation. We concluded that the proposed method is fast, robust and high accuracy.\",\"PeriodicalId\":246351,\"journal\":{\"name\":\"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2013.6829273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2013.6829273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

正电子发射层析成像(PET)通常是基于二维闪烁晶体阵列与光子探测器耦合,并通过昂热逻辑进行解码。解码后的结果是伽马相互作用的伪位置。由洪水直方图生成的晶体位置图(CPM)用作晶体查找表(CLT),将每个伪位置分配给特定的晶体。cpm的精度直接影响到探测器的空间分辨率。本文提出了一种基于邻域标准差(NSD)的CPM生成算法。我们首先计算洪水直方图中每个像素的NSD,包括x和y方向。NSD地图的峰顶与洪水直方图的山谷高度对应。利用非线性最小二乘法将NSD曲线拟合到高斯混合函数中,识别出峰值。利用峰值,通过扫描线算法生成CPM。将该算法应用于动物PET系统中。120个检测器模块中的115个可以在~1000秒内自动分割。通过热棒模型实验,重建结果表明,基于NSD的自动分割方法生成的CPM图像比手工分割生成的CPM图像具有更高的空间分辨率。结果表明,该方法具有快速、鲁棒性好、精度高等特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A neighborhood standard deviation based algorithm for generating PET crystal position maps
Positron emission tomography (PET) is typically based on 2-D array of scintillation crystals coupled to photon detector and decoded by the Anger-logic. The decoded result is a pseudo-position of the gamma interaction. A crystal position map (CPM) generated from the flood histogram is used as a crystal look-up table (CLT) to assign each pseudo-position to a specific crystal. It is crucial that the accuracy of CPMs affects the detector's spatial resolution. In this paper, we developed a neighborhood standard deviation (NSD) based algorithm for generating CPM. We first calculated the NSD of each pixel in the flood histogram including the x and y directions. NSD maps have strips whose peaks highly correspond to the valley of the flood histogram. The peaks were identified by fitting the profiles of NSD to Gaussian mixture functions using nonlinear least-square method. Using the peaks, the CPM was generated by a scan line algorithm. The proposed algorithm was applied in an animal PET system. 115 of 120 detector blocks can be automatically segmented in ~1000 s. A hot rod phantom experiment was performed, and the reconstruction results showed that the one with CPM generated by NSD based automatic method achieved higher spatial resolution than the one with CPM generated by manual segmentation. We concluded that the proposed method is fast, robust and high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Scientific Trigger Unit for space-based real-time gamma ray burst detection I - Scientific software model and simulations Study on two-cell rf-deflector cavity for ultra-short electron bunch measurement Applications of many-core technologies to on-line event reconstruction in High Energy Physics experiments Optimization of the gas system in the CMS RPC detector at the LHC Performance of the ATLAS calorimeter trigger in the LHC Run 1 data taking period
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1