{"title":"缺氧的生化后果。","authors":"K G Alberti","doi":"10.1136/jcp.s3-11.1.14","DOIUrl":null,"url":null,"abstract":"<p><p>The various phases of energy production have been described. These include glycolysis which is unique in its ability to produce ATP anaerobically, the tricarboxylic acid cycle with its major contribution to ATP production coming through the generation of NADH, and the cytochrome system at which reducing equivalents are converted to water, the released energy being incorporated into high-energy phosphates. The regulation of these pathways has been briefly described and the importance of the small amount of ATP generated anaerobically emphasized. The adaptation of muscle to periods of hypoxia through the presence of myoglobin, creatine phosphate and large amounts of glycogen is then discussed. The role of pH in limiting anaerobic glycolysis in muscle and the importance of the circulation in providing oxygen for exercising muscle are outlined. The effects of hypoxia on certain other tissues such as liver and brain have been detailed and finally methods for assessment of tissue hypoxia in man such as the measurement of the lactate:pyruvate ratio in blood are presented.</p>","PeriodicalId":75996,"journal":{"name":"Journal of clinical pathology. Supplement (Royal College of Pathologists)","volume":"11 ","pages":"14-20"},"PeriodicalIF":0.0000,"publicationDate":"1977-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1136/jcp.s3-11.1.14","citationCount":"54","resultStr":"{\"title\":\"The biochemical consequences of hypoxia.\",\"authors\":\"K G Alberti\",\"doi\":\"10.1136/jcp.s3-11.1.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The various phases of energy production have been described. These include glycolysis which is unique in its ability to produce ATP anaerobically, the tricarboxylic acid cycle with its major contribution to ATP production coming through the generation of NADH, and the cytochrome system at which reducing equivalents are converted to water, the released energy being incorporated into high-energy phosphates. The regulation of these pathways has been briefly described and the importance of the small amount of ATP generated anaerobically emphasized. The adaptation of muscle to periods of hypoxia through the presence of myoglobin, creatine phosphate and large amounts of glycogen is then discussed. The role of pH in limiting anaerobic glycolysis in muscle and the importance of the circulation in providing oxygen for exercising muscle are outlined. The effects of hypoxia on certain other tissues such as liver and brain have been detailed and finally methods for assessment of tissue hypoxia in man such as the measurement of the lactate:pyruvate ratio in blood are presented.</p>\",\"PeriodicalId\":75996,\"journal\":{\"name\":\"Journal of clinical pathology. Supplement (Royal College of Pathologists)\",\"volume\":\"11 \",\"pages\":\"14-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1977-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1136/jcp.s3-11.1.14\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of clinical pathology. Supplement (Royal College of Pathologists)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1136/jcp.s3-11.1.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical pathology. Supplement (Royal College of Pathologists)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/jcp.s3-11.1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

已经描述了能源生产的各个阶段。其中包括糖酵解,其独特的厌氧产生ATP的能力,三羧酸循环,其主要贡献是通过生成NADH来产生ATP,以及细胞色素系统,其中还原等效物转化为水,释放的能量被纳入高能磷酸盐。这些途径的调节已被简要描述,并强调了厌氧产生少量ATP的重要性。然后讨论了肌红蛋白、磷酸肌酸和大量糖原的存在对缺氧时期肌肉的适应。概述了pH值在限制肌肉无氧糖酵解中的作用以及循环在为运动肌肉提供氧气方面的重要性。缺氧对肝脏、脑等组织的影响已作了详细介绍,最后提出了人体组织缺氧的评估方法,如测定血液中乳酸:丙酮酸比值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The biochemical consequences of hypoxia.

The various phases of energy production have been described. These include glycolysis which is unique in its ability to produce ATP anaerobically, the tricarboxylic acid cycle with its major contribution to ATP production coming through the generation of NADH, and the cytochrome system at which reducing equivalents are converted to water, the released energy being incorporated into high-energy phosphates. The regulation of these pathways has been briefly described and the importance of the small amount of ATP generated anaerobically emphasized. The adaptation of muscle to periods of hypoxia through the presence of myoglobin, creatine phosphate and large amounts of glycogen is then discussed. The role of pH in limiting anaerobic glycolysis in muscle and the importance of the circulation in providing oxygen for exercising muscle are outlined. The effects of hypoxia on certain other tissues such as liver and brain have been detailed and finally methods for assessment of tissue hypoxia in man such as the measurement of the lactate:pyruvate ratio in blood are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Basis of antifibrinolytic therapy. Assessment of inhibitors with chromogenic substrates. Biological role of fibrinolysis. Breakdown products of fibrin and fibrinogen: molecular mechanisms and clinical implications. Biochemistry of the plasmin system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1