应用计算机视觉技术开发栽培植物病变识别模型

N. Yanishevskaya, I. Bolodurina
{"title":"应用计算机视觉技术开发栽培植物病变识别模型","authors":"N. Yanishevskaya, I. Bolodurina","doi":"10.14529/ctcr210301","DOIUrl":null,"url":null,"abstract":"In the Russian Federation, the agro-industrial complex is one of the leading sectors of the eco-nomy with a volume of domestic product of 4.5%. Russia owns 10 % of all arable land in the world. According to the data on the sown areas by crops in 2020, most of the agricultural area of Russia is occupied by wheat. The Russian Federation ranks third in the ranking of leading countries in the production of this type of grain crops, as well as leading positions in its export. Brown (leaf) and linear (stem) rust is the most harmful disease of grain crops. It is the reason for the sparseness of wheat crops and leads to a sharp decrease in yield. Therefore, one of the main tasks of farmers is to preserve the crop from diseases. The application of such areas of artificial intelligence as computer vision, machine learning and deep learning is able to cope with this task. These artificial intelligence technologies allow us to successfully solve applied problems of the agro-industrial complex using automated analysis of photographic materials. Aim. To consider the application of computer vision methods for the problem of classification of lesions of cultivated plants on the example of wheat. Materials and methods. The CGIAR Computer Vision for Crop Disease dataset for the crop disease recognition task is taken from the open source Kaggle. It is proposed to use an approach to the re-cognition of lesions of cultivated plants using the well-known neural network models ResNet50, DenseNet169, VGG16 and EfficientNet-B0. Neural network models receive images of wheat as in-put. The output of neural networks is the class of plant damage. To overcome the effect of overfit-ting neural networks, various regularization techniques are investigated. Results. The results of the classification quality, estimated by the software using the F1-score metric, which is the average harmonic between the Precision and Recall measures, are presented. Conclusion. As a result of the conducted research, it was found that the DenseNet model showed the best recognition accuracy us-ing a combination of transfer learning technology and DropOut and L2 regulation technologies to overcome the effect of retraining. The use of this approach allowed us to achieve a recognition ac-curacy of 91%.","PeriodicalId":338904,"journal":{"name":"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APPLICATION OF COMPUTER VISION TECHNOLOGIES FOR THE DEVELOPMENT OF A MODEL FOR THE RECOGNITION OF LESIONS OF CULTIVATED PLANTS\",\"authors\":\"N. Yanishevskaya, I. Bolodurina\",\"doi\":\"10.14529/ctcr210301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Russian Federation, the agro-industrial complex is one of the leading sectors of the eco-nomy with a volume of domestic product of 4.5%. Russia owns 10 % of all arable land in the world. According to the data on the sown areas by crops in 2020, most of the agricultural area of Russia is occupied by wheat. The Russian Federation ranks third in the ranking of leading countries in the production of this type of grain crops, as well as leading positions in its export. Brown (leaf) and linear (stem) rust is the most harmful disease of grain crops. It is the reason for the sparseness of wheat crops and leads to a sharp decrease in yield. Therefore, one of the main tasks of farmers is to preserve the crop from diseases. The application of such areas of artificial intelligence as computer vision, machine learning and deep learning is able to cope with this task. These artificial intelligence technologies allow us to successfully solve applied problems of the agro-industrial complex using automated analysis of photographic materials. Aim. To consider the application of computer vision methods for the problem of classification of lesions of cultivated plants on the example of wheat. Materials and methods. The CGIAR Computer Vision for Crop Disease dataset for the crop disease recognition task is taken from the open source Kaggle. It is proposed to use an approach to the re-cognition of lesions of cultivated plants using the well-known neural network models ResNet50, DenseNet169, VGG16 and EfficientNet-B0. Neural network models receive images of wheat as in-put. The output of neural networks is the class of plant damage. To overcome the effect of overfit-ting neural networks, various regularization techniques are investigated. Results. The results of the classification quality, estimated by the software using the F1-score metric, which is the average harmonic between the Precision and Recall measures, are presented. Conclusion. As a result of the conducted research, it was found that the DenseNet model showed the best recognition accuracy us-ing a combination of transfer learning technology and DropOut and L2 regulation technologies to overcome the effect of retraining. The use of this approach allowed us to achieve a recognition ac-curacy of 91%.\",\"PeriodicalId\":338904,\"journal\":{\"name\":\"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14529/ctcr210301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/ctcr210301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在俄罗斯联邦,农工综合体是经济的主要部门之一,占国内生产总值的4.5%。俄罗斯拥有全世界10%的可耕地。根据2020年作物播种面积的数据,俄罗斯的大部分农业面积都被小麦占据。俄罗斯联邦在这类粮食作物生产的主要国家中排名第三,在出口方面也处于领先地位。褐锈病(叶锈病)和线状锈病(茎锈病)是对粮食作物危害最大的病害。这是小麦作物稀少的原因,导致产量急剧下降。因此,农民的主要任务之一是保护作物免受病害。计算机视觉、机器学习和深度学习等人工智能领域的应用能够应对这一任务。这些人工智能技术使我们能够通过对摄影材料的自动分析,成功地解决农工综合体的应用问题。的目标。以小麦为例,探讨计算机视觉方法在栽培植物病害分类中的应用。材料和方法。用于作物病害识别任务的CGIAR作物病害计算机视觉数据集取自开源的Kaggle。提出了一种利用知名神经网络模型ResNet50、DenseNet169、VGG16和EfficientNet-B0对栽培植物损伤进行再识别的方法。神经网络模型接收小麦图像作为输入。神经网络的输出是植物损伤的类别。为了克服过拟合神经网络的影响,研究了各种正则化技术。结果。分类质量的结果,由软件估计使用f1得分指标,这是精度和召回率之间的平均调和措施,提出。结论。研究结果表明,DenseNet模型结合迁移学习技术、DropOut和L2调节技术克服再训练的影响,识别准确率最高。使用这种方法使我们能够达到91%的识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
APPLICATION OF COMPUTER VISION TECHNOLOGIES FOR THE DEVELOPMENT OF A MODEL FOR THE RECOGNITION OF LESIONS OF CULTIVATED PLANTS
In the Russian Federation, the agro-industrial complex is one of the leading sectors of the eco-nomy with a volume of domestic product of 4.5%. Russia owns 10 % of all arable land in the world. According to the data on the sown areas by crops in 2020, most of the agricultural area of Russia is occupied by wheat. The Russian Federation ranks third in the ranking of leading countries in the production of this type of grain crops, as well as leading positions in its export. Brown (leaf) and linear (stem) rust is the most harmful disease of grain crops. It is the reason for the sparseness of wheat crops and leads to a sharp decrease in yield. Therefore, one of the main tasks of farmers is to preserve the crop from diseases. The application of such areas of artificial intelligence as computer vision, machine learning and deep learning is able to cope with this task. These artificial intelligence technologies allow us to successfully solve applied problems of the agro-industrial complex using automated analysis of photographic materials. Aim. To consider the application of computer vision methods for the problem of classification of lesions of cultivated plants on the example of wheat. Materials and methods. The CGIAR Computer Vision for Crop Disease dataset for the crop disease recognition task is taken from the open source Kaggle. It is proposed to use an approach to the re-cognition of lesions of cultivated plants using the well-known neural network models ResNet50, DenseNet169, VGG16 and EfficientNet-B0. Neural network models receive images of wheat as in-put. The output of neural networks is the class of plant damage. To overcome the effect of overfit-ting neural networks, various regularization techniques are investigated. Results. The results of the classification quality, estimated by the software using the F1-score metric, which is the average harmonic between the Precision and Recall measures, are presented. Conclusion. As a result of the conducted research, it was found that the DenseNet model showed the best recognition accuracy us-ing a combination of transfer learning technology and DropOut and L2 regulation technologies to overcome the effect of retraining. The use of this approach allowed us to achieve a recognition ac-curacy of 91%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Formalization of Basic Processes and Mathematical Model of the System for Monitoring and Analysis of Publications of Electronic Media Determination of the Parameters of the La¬mination of a Bimetallic Plate by Means of Active Thermal Non-Destructive Control Perm Region Natural Resource Potential Forecasting Using Machine Learning Models To the Question of Determining the Barometric Height by a Mechanical Altimeter and Air Signal System Formalism of Writing Out of Manipulators Dynamic Equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1