内存数据库集群的高效资源分配和供应

Karsten Molka, G. Casale
{"title":"内存数据库集群的高效资源分配和供应","authors":"Karsten Molka, G. Casale","doi":"10.23919/INM.2017.7987260","DOIUrl":null,"url":null,"abstract":"Systems for processing large scale analytical workloads are increasingly moving from on-premise setups to on-demand configurations deployed on scalable cloud infrastructures. To reduce the cost of such infrastructures, existing research focuses on developing novel methods for workload and server consolidation. In this paper, we combine analytical modeling and non-linear optimization to help cloud providers increase the energy-efficiency of in-memory database clusters in cloud environments. We model this scenario as a multi-dimensional bin-packing problem and propose a new approach based on a hybrid genetic algorithm that efficiently handles resource allocation and server assignment for a given set of in-memory databases. Our trace-driven evaluation is based on measurements from an SAP HANA in-memory system and indicates improvements between 6% and 32% over the popular best-fit decreasing heuristic.","PeriodicalId":119633,"journal":{"name":"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Energy-efficient resource allocation and provisioning for in-memory database clusters\",\"authors\":\"Karsten Molka, G. Casale\",\"doi\":\"10.23919/INM.2017.7987260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systems for processing large scale analytical workloads are increasingly moving from on-premise setups to on-demand configurations deployed on scalable cloud infrastructures. To reduce the cost of such infrastructures, existing research focuses on developing novel methods for workload and server consolidation. In this paper, we combine analytical modeling and non-linear optimization to help cloud providers increase the energy-efficiency of in-memory database clusters in cloud environments. We model this scenario as a multi-dimensional bin-packing problem and propose a new approach based on a hybrid genetic algorithm that efficiently handles resource allocation and server assignment for a given set of in-memory databases. Our trace-driven evaluation is based on measurements from an SAP HANA in-memory system and indicates improvements between 6% and 32% over the popular best-fit decreasing heuristic.\",\"PeriodicalId\":119633,\"journal\":{\"name\":\"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/INM.2017.7987260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/INM.2017.7987260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

用于处理大规模分析工作负载的系统越来越多地从本地设置转向部署在可扩展云基础设施上的按需配置。为了降低这种基础设施的成本,现有的研究集中在开发工作负载和服务器整合的新方法上。在本文中,我们结合分析建模和非线性优化来帮助云提供商提高云环境中内存数据库集群的能源效率。我们将这种情况建模为多维装箱问题,并提出了一种基于混合遗传算法的新方法,该方法可以有效地处理给定的一组内存数据库的资源分配和服务器分配。我们的跟踪驱动评估基于SAP HANA内存系统的测量结果,表明与流行的最佳拟合递减启发式方法相比,改进幅度在6%到32%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy-efficient resource allocation and provisioning for in-memory database clusters
Systems for processing large scale analytical workloads are increasingly moving from on-premise setups to on-demand configurations deployed on scalable cloud infrastructures. To reduce the cost of such infrastructures, existing research focuses on developing novel methods for workload and server consolidation. In this paper, we combine analytical modeling and non-linear optimization to help cloud providers increase the energy-efficiency of in-memory database clusters in cloud environments. We model this scenario as a multi-dimensional bin-packing problem and propose a new approach based on a hybrid genetic algorithm that efficiently handles resource allocation and server assignment for a given set of in-memory databases. Our trace-driven evaluation is based on measurements from an SAP HANA in-memory system and indicates improvements between 6% and 32% over the popular best-fit decreasing heuristic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A graph-based representation of relations in network security alert sharing platforms Network defence strategy evaluation: Simulation vs. live network Exchanging security events: Which and how many alerts can we aggregate? Honeypot testbed for network defence strategy evaluation SDQ: Enabling rapid QoE experimentation using Software Defined Networking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1