基于支持向量数据描述的移动机器人内部传感器故障检测

Zhuohua Duan, Hui Ma, Liang Yang
{"title":"基于支持向量数据描述的移动机器人内部传感器故障检测","authors":"Zhuohua Duan, Hui Ma, Liang Yang","doi":"10.1109/CCDC.2015.7162389","DOIUrl":null,"url":null,"abstract":"Fault detection and diagnosis is an important issue for mobile robots, especially for the case that the dynamics of fault models are unknown, where the samples of fault models are difficult to obtain. Support vector data description (SVDD) is an useful tool for model construction based only on one class of samples. This paper presents a fault detection method for mobile robots internal sensors based on SVDD. It assumes that only the samples from the normal model are available. The presented method firstly builds an compact hypersphere for these normal samples based on SVDD, then a new test data is validated with the obtained hypersphere. Simulation results of mobile robot fault detection show the accuracy of the method.","PeriodicalId":273292,"journal":{"name":"The 27th Chinese Control and Decision Conference (2015 CCDC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fault detection for internal sensors of mobile robots based on support vector data description\",\"authors\":\"Zhuohua Duan, Hui Ma, Liang Yang\",\"doi\":\"10.1109/CCDC.2015.7162389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault detection and diagnosis is an important issue for mobile robots, especially for the case that the dynamics of fault models are unknown, where the samples of fault models are difficult to obtain. Support vector data description (SVDD) is an useful tool for model construction based only on one class of samples. This paper presents a fault detection method for mobile robots internal sensors based on SVDD. It assumes that only the samples from the normal model are available. The presented method firstly builds an compact hypersphere for these normal samples based on SVDD, then a new test data is validated with the obtained hypersphere. Simulation results of mobile robot fault detection show the accuracy of the method.\",\"PeriodicalId\":273292,\"journal\":{\"name\":\"The 27th Chinese Control and Decision Conference (2015 CCDC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 27th Chinese Control and Decision Conference (2015 CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2015.7162389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 27th Chinese Control and Decision Conference (2015 CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2015.7162389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

故障检测与诊断是移动机器人的一个重要问题,特别是在故障模型动力学未知的情况下,故障模型的样本难以获得。支持向量数据描述(SVDD)是一种仅基于一类样本构建模型的有用工具。提出了一种基于SVDD的移动机器人内部传感器故障检测方法。它假设只有正常模型的样本是可用的。该方法首先基于SVDD对这些正态样本构建紧致超球,然后利用得到的超球对新的测试数据进行验证。移动机器人故障检测的仿真结果表明了该方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault detection for internal sensors of mobile robots based on support vector data description
Fault detection and diagnosis is an important issue for mobile robots, especially for the case that the dynamics of fault models are unknown, where the samples of fault models are difficult to obtain. Support vector data description (SVDD) is an useful tool for model construction based only on one class of samples. This paper presents a fault detection method for mobile robots internal sensors based on SVDD. It assumes that only the samples from the normal model are available. The presented method firstly builds an compact hypersphere for these normal samples based on SVDD, then a new test data is validated with the obtained hypersphere. Simulation results of mobile robot fault detection show the accuracy of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application and design of attack and defense algorithms in WTN chess of computer games Research on calculating method of hidden layer nodes in BP network An improved GAFSA with adaptive step chaotic search The research on flywheel acceleration assessment with null motion escaping singularity for variable speed control moment gyros A multiple sub-models self-tuning control algorithm of non-uniformly sampled systems based on auxiliary-variable-model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1