{"title":"基于粒子群优化的矢量滞止行为分析","authors":"Wiehann Matthysen, A. Engelbrecht, K. Malan","doi":"10.1109/SIS.2013.6615173","DOIUrl":null,"url":null,"abstract":"The vector evaluated particle swarm optimization (VEPSO) algorithm is a cooperative, multi-swarm algorithm. Each sub-swarm optimizes only a single objective of a multi-objective problem (MOP), and implements a knowledge transfer strategy (KTS) to share optimal positions of the different objectives among the sub-swarms, guiding the particles to different regions of the Pareto front. This paper shows that the stagnation problem that occurs in VEPSO can be addressed by using a different KTS. A comparison is made between the ring-based and random knowledge transfer strategies. Experimental results show that the random knowledge transfer strategy suffers less from stagnation than the ring-based KTS, making it the preferred KTS to use.","PeriodicalId":444765,"journal":{"name":"2013 IEEE Symposium on Swarm Intelligence (SIS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Analysis of stagnation behavior of vector evaluated particle swarm optimization\",\"authors\":\"Wiehann Matthysen, A. Engelbrecht, K. Malan\",\"doi\":\"10.1109/SIS.2013.6615173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vector evaluated particle swarm optimization (VEPSO) algorithm is a cooperative, multi-swarm algorithm. Each sub-swarm optimizes only a single objective of a multi-objective problem (MOP), and implements a knowledge transfer strategy (KTS) to share optimal positions of the different objectives among the sub-swarms, guiding the particles to different regions of the Pareto front. This paper shows that the stagnation problem that occurs in VEPSO can be addressed by using a different KTS. A comparison is made between the ring-based and random knowledge transfer strategies. Experimental results show that the random knowledge transfer strategy suffers less from stagnation than the ring-based KTS, making it the preferred KTS to use.\",\"PeriodicalId\":444765,\"journal\":{\"name\":\"2013 IEEE Symposium on Swarm Intelligence (SIS)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Symposium on Swarm Intelligence (SIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIS.2013.6615173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Swarm Intelligence (SIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2013.6615173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of stagnation behavior of vector evaluated particle swarm optimization
The vector evaluated particle swarm optimization (VEPSO) algorithm is a cooperative, multi-swarm algorithm. Each sub-swarm optimizes only a single objective of a multi-objective problem (MOP), and implements a knowledge transfer strategy (KTS) to share optimal positions of the different objectives among the sub-swarms, guiding the particles to different regions of the Pareto front. This paper shows that the stagnation problem that occurs in VEPSO can be addressed by using a different KTS. A comparison is made between the ring-based and random knowledge transfer strategies. Experimental results show that the random knowledge transfer strategy suffers less from stagnation than the ring-based KTS, making it the preferred KTS to use.