基于粒子群优化的矢量滞止行为分析

Wiehann Matthysen, A. Engelbrecht, K. Malan
{"title":"基于粒子群优化的矢量滞止行为分析","authors":"Wiehann Matthysen, A. Engelbrecht, K. Malan","doi":"10.1109/SIS.2013.6615173","DOIUrl":null,"url":null,"abstract":"The vector evaluated particle swarm optimization (VEPSO) algorithm is a cooperative, multi-swarm algorithm. Each sub-swarm optimizes only a single objective of a multi-objective problem (MOP), and implements a knowledge transfer strategy (KTS) to share optimal positions of the different objectives among the sub-swarms, guiding the particles to different regions of the Pareto front. This paper shows that the stagnation problem that occurs in VEPSO can be addressed by using a different KTS. A comparison is made between the ring-based and random knowledge transfer strategies. Experimental results show that the random knowledge transfer strategy suffers less from stagnation than the ring-based KTS, making it the preferred KTS to use.","PeriodicalId":444765,"journal":{"name":"2013 IEEE Symposium on Swarm Intelligence (SIS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Analysis of stagnation behavior of vector evaluated particle swarm optimization\",\"authors\":\"Wiehann Matthysen, A. Engelbrecht, K. Malan\",\"doi\":\"10.1109/SIS.2013.6615173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vector evaluated particle swarm optimization (VEPSO) algorithm is a cooperative, multi-swarm algorithm. Each sub-swarm optimizes only a single objective of a multi-objective problem (MOP), and implements a knowledge transfer strategy (KTS) to share optimal positions of the different objectives among the sub-swarms, guiding the particles to different regions of the Pareto front. This paper shows that the stagnation problem that occurs in VEPSO can be addressed by using a different KTS. A comparison is made between the ring-based and random knowledge transfer strategies. Experimental results show that the random knowledge transfer strategy suffers less from stagnation than the ring-based KTS, making it the preferred KTS to use.\",\"PeriodicalId\":444765,\"journal\":{\"name\":\"2013 IEEE Symposium on Swarm Intelligence (SIS)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Symposium on Swarm Intelligence (SIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIS.2013.6615173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Swarm Intelligence (SIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2013.6615173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

向量评估粒子群优化算法(VEPSO)是一种协作的多群算法。每个子群只对多目标问题(MOP)中的单个目标进行优化,并通过知识转移策略(KTS)在子群之间共享不同目标的最优位置,引导粒子到达帕雷托前沿的不同区域。本文表明,VEPSO中出现的停滞问题可以通过使用不同的KTS来解决。对基于环的知识转移策略和随机知识转移策略进行了比较。实验结果表明,与基于环的KTS相比,随机知识转移策略受停滞的影响较小,是首选的KTS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of stagnation behavior of vector evaluated particle swarm optimization
The vector evaluated particle swarm optimization (VEPSO) algorithm is a cooperative, multi-swarm algorithm. Each sub-swarm optimizes only a single objective of a multi-objective problem (MOP), and implements a knowledge transfer strategy (KTS) to share optimal positions of the different objectives among the sub-swarms, guiding the particles to different regions of the Pareto front. This paper shows that the stagnation problem that occurs in VEPSO can be addressed by using a different KTS. A comparison is made between the ring-based and random knowledge transfer strategies. Experimental results show that the random knowledge transfer strategy suffers less from stagnation than the ring-based KTS, making it the preferred KTS to use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of stagnation behavior of vector evaluated particle swarm optimization Reinforcement learning in swarm-robotics for multi-agent foraging-task domain A novel ACO algorithm for dynamic binary chains based on changes in the system's stability Cooperative particle swarm optimization in dynamic environments Joint energy and spinning reserve dispatch in wind-thermal power system using IDE-SAR technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1