比较自我中心视频的关键帧摘要:最接近质心基线

L. Kuncheva, Paria Yousefi, J. Almeida
{"title":"比较自我中心视频的关键帧摘要:最接近质心基线","authors":"L. Kuncheva, Paria Yousefi, J. Almeida","doi":"10.1109/IPTA.2017.8310123","DOIUrl":null,"url":null,"abstract":"Evaluation of keyframe video summaries is a notoriously difficult problem. So far, there is no consensus on guidelines, protocols, benchmarks and baseline models. This study contributes in three ways: (1) We propose a new baseline model for creating a keyframe summary, called Closest-to-Centroid, and show that it is a better contestant compared to the two most popular baselines: uniform sampling and choosing the mid-event frame. (2) We also propose a method for matching the visual appearance of keyframes, suitable for comparing summaries of egocentric videos and lifelogging photostreams. (3) We examine 24 image feature spaces (different descriptors) including colour, texture, shape, motion and a feature space extracted by a pre-trained convolutional neural network (CNN). Our results using the four egocentric videos in the UTE database favour low-level shape and colour feature spaces for use with CC.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparing keyframe summaries of egocentric videos: Closest-to-centroid baseline\",\"authors\":\"L. Kuncheva, Paria Yousefi, J. Almeida\",\"doi\":\"10.1109/IPTA.2017.8310123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluation of keyframe video summaries is a notoriously difficult problem. So far, there is no consensus on guidelines, protocols, benchmarks and baseline models. This study contributes in three ways: (1) We propose a new baseline model for creating a keyframe summary, called Closest-to-Centroid, and show that it is a better contestant compared to the two most popular baselines: uniform sampling and choosing the mid-event frame. (2) We also propose a method for matching the visual appearance of keyframes, suitable for comparing summaries of egocentric videos and lifelogging photostreams. (3) We examine 24 image feature spaces (different descriptors) including colour, texture, shape, motion and a feature space extracted by a pre-trained convolutional neural network (CNN). Our results using the four egocentric videos in the UTE database favour low-level shape and colour feature spaces for use with CC.\",\"PeriodicalId\":316356,\"journal\":{\"name\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2017.8310123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

关键帧视频摘要的评估是一个众所周知的难题。到目前为止,在指导方针、协议、基准和基线模型上还没有达成共识。本研究在三个方面做出了贡献:(1)我们提出了一个新的基线模型,用于创建关键帧摘要,称为“最接近质心”,并表明与两种最流行的基线(均匀采样和选择中间事件帧)相比,它是一个更好的竞争者。(2)我们还提出了一种匹配关键帧视觉外观的方法,适合于比较以自我为中心的视频和记录生活的照片流的摘要。(3)我们研究了24个图像特征空间(不同的描述符),包括颜色、纹理、形状、运动和由预训练的卷积神经网络(CNN)提取的特征空间。我们使用UTE数据库中的四个自我中心视频的结果有利于与CC一起使用的低级形状和颜色特征空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparing keyframe summaries of egocentric videos: Closest-to-centroid baseline
Evaluation of keyframe video summaries is a notoriously difficult problem. So far, there is no consensus on guidelines, protocols, benchmarks and baseline models. This study contributes in three ways: (1) We propose a new baseline model for creating a keyframe summary, called Closest-to-Centroid, and show that it is a better contestant compared to the two most popular baselines: uniform sampling and choosing the mid-event frame. (2) We also propose a method for matching the visual appearance of keyframes, suitable for comparing summaries of egocentric videos and lifelogging photostreams. (3) We examine 24 image feature spaces (different descriptors) including colour, texture, shape, motion and a feature space extracted by a pre-trained convolutional neural network (CNN). Our results using the four egocentric videos in the UTE database favour low-level shape and colour feature spaces for use with CC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated quantification of retinal vessel morphometry in the UK biobank cohort Deep learning for automatic sale receipt understanding Illumination-robust multispectral demosaicing Completed local structure patterns on three orthogonal planes for dynamic texture recognition Single object tracking using offline trained deep regression networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1