{"title":"通过STAR-RIS实现泛在非正交多址访问和普适联邦学习","authors":"Wanli Ni, Yuanwei Liu, Yonina C. Eldar, Zhaohui Yang, Hui Tian","doi":"10.1109/GLOBECOM46510.2021.9685556","DOIUrl":null,"url":null,"abstract":"This paper proposes a new, compatible, unified framework which integrates non-orthogonal multiple access (NOMA) and over-the-air federated learning (AirFL) via concurrent communication. In particular, a simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) is leveraged to adjust the signal processing order for efficient interference mitigation and omni-directional coverage extension. With the aim of investigating the impact of non-ideal wireless communication on AirFL, we provide a closed-form expression for the optimality gap over a given number of communication rounds. This result reveals that the learning performance is significantly affected by the resource allocation scheme and channel noise. To minimize the derived optimality gap, a mixed-integer non-linear programming (MINLP) problem is formulated by jointly designing the transmit power at users and configuration mode at the STAR-RIS. Through developing an alternating optimization algorithm, a suboptimal solution for the original MINLP problem is obtained. Simulation results show that the learning performance in terms of training loss and test accuracy can be effectively improved with the aid of the STAR-RIS.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"213 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Enabling Ubiquitous Non-Orthogonal Multiple Access and Pervasive Federated Learning via STAR-RIS\",\"authors\":\"Wanli Ni, Yuanwei Liu, Yonina C. Eldar, Zhaohui Yang, Hui Tian\",\"doi\":\"10.1109/GLOBECOM46510.2021.9685556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new, compatible, unified framework which integrates non-orthogonal multiple access (NOMA) and over-the-air federated learning (AirFL) via concurrent communication. In particular, a simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) is leveraged to adjust the signal processing order for efficient interference mitigation and omni-directional coverage extension. With the aim of investigating the impact of non-ideal wireless communication on AirFL, we provide a closed-form expression for the optimality gap over a given number of communication rounds. This result reveals that the learning performance is significantly affected by the resource allocation scheme and channel noise. To minimize the derived optimality gap, a mixed-integer non-linear programming (MINLP) problem is formulated by jointly designing the transmit power at users and configuration mode at the STAR-RIS. Through developing an alternating optimization algorithm, a suboptimal solution for the original MINLP problem is obtained. Simulation results show that the learning performance in terms of training loss and test accuracy can be effectively improved with the aid of the STAR-RIS.\",\"PeriodicalId\":200641,\"journal\":{\"name\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"213 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM46510.2021.9685556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9685556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enabling Ubiquitous Non-Orthogonal Multiple Access and Pervasive Federated Learning via STAR-RIS
This paper proposes a new, compatible, unified framework which integrates non-orthogonal multiple access (NOMA) and over-the-air federated learning (AirFL) via concurrent communication. In particular, a simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) is leveraged to adjust the signal processing order for efficient interference mitigation and omni-directional coverage extension. With the aim of investigating the impact of non-ideal wireless communication on AirFL, we provide a closed-form expression for the optimality gap over a given number of communication rounds. This result reveals that the learning performance is significantly affected by the resource allocation scheme and channel noise. To minimize the derived optimality gap, a mixed-integer non-linear programming (MINLP) problem is formulated by jointly designing the transmit power at users and configuration mode at the STAR-RIS. Through developing an alternating optimization algorithm, a suboptimal solution for the original MINLP problem is obtained. Simulation results show that the learning performance in terms of training loss and test accuracy can be effectively improved with the aid of the STAR-RIS.