FSR CNN模型的收敛性和稳定性

S. Espejo, Á. Rodríguez-Vázquez, R. Domínguez-Castro, R. Carmona
{"title":"FSR CNN模型的收敛性和稳定性","authors":"S. Espejo, Á. Rodríguez-Vázquez, R. Domínguez-Castro, R. Carmona","doi":"10.1109/CNNA.1994.381640","DOIUrl":null,"url":null,"abstract":"Stability and convergency results are reported for a modified continuous-time CNN model. The signal range of the state variables is equal to the unitary interval, independently of the application, Stability and convergency properties are similar to those of the original model and, for given templates and offset coefficients. The results are generally identical. In addition, robustness and area-efficiency of VLSI implementations are significantly advantageous.<<ETX>>","PeriodicalId":248898,"journal":{"name":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Convergence and stability of the FSR CNN model\",\"authors\":\"S. Espejo, Á. Rodríguez-Vázquez, R. Domínguez-Castro, R. Carmona\",\"doi\":\"10.1109/CNNA.1994.381640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stability and convergency results are reported for a modified continuous-time CNN model. The signal range of the state variables is equal to the unitary interval, independently of the application, Stability and convergency properties are similar to those of the original model and, for given templates and offset coefficients. The results are generally identical. In addition, robustness and area-efficiency of VLSI implementations are significantly advantageous.<<ETX>>\",\"PeriodicalId\":248898,\"journal\":{\"name\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1994.381640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1994.381640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

报道了一种改进的连续时间CNN模型的稳定性和收敛性结果。状态变量的信号范围等于酉区间,与应用无关,对于给定模板和偏移系数,稳定性和收敛性与原始模型相似。结果大致相同。此外,VLSI实现的鲁棒性和面积效率也具有显著优势
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convergence and stability of the FSR CNN model
Stability and convergency results are reported for a modified continuous-time CNN model. The signal range of the state variables is equal to the unitary interval, independently of the application, Stability and convergency properties are similar to those of the original model and, for given templates and offset coefficients. The results are generally identical. In addition, robustness and area-efficiency of VLSI implementations are significantly advantageous.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Realisation of a digital cellular neural network for image processing Convergence and stability of the FSR CNN model A versatile CMOS building block for fully analogically-programmable VLSI cellular neural networks A fast, complex and efficient test implementation of the CNN Universal Machine Optoelectronic cellular neural networks based on amorphous silicon thin film technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1