{"title":"基于参数分布聚类的颜色和纹理结合分割","authors":"Thomas Zöller, L. Hermes, J. Buhmann","doi":"10.1109/ICPR.2002.1048380","DOIUrl":null,"url":null,"abstract":"Unsupervised image segmentation can be formulated as a clustering problem in which pixels or small image patches are grouped together based on local feature information. In this contribution, parametric distributional clustering (PDC) is presented as a novel approach to image segmentation based on color and texture clues. The objective function of the PDC model is derived from the recently proposed Information Bottleneck framework (Tishby et al., 1999), but it can equivalently be formulated in terms of a maximum likelihood solution. Its optimization is performed by deterministic annealing. Segmentation results are shown for natural wildlife imagery.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Combined color and texture segmentation by parametric distributional clustering\",\"authors\":\"Thomas Zöller, L. Hermes, J. Buhmann\",\"doi\":\"10.1109/ICPR.2002.1048380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised image segmentation can be formulated as a clustering problem in which pixels or small image patches are grouped together based on local feature information. In this contribution, parametric distributional clustering (PDC) is presented as a novel approach to image segmentation based on color and texture clues. The objective function of the PDC model is derived from the recently proposed Information Bottleneck framework (Tishby et al., 1999), but it can equivalently be formulated in terms of a maximum likelihood solution. Its optimization is performed by deterministic annealing. Segmentation results are shown for natural wildlife imagery.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
摘要
无监督图像分割可以表述为基于局部特征信息将像素或小图像块分组在一起的聚类问题。在这篇贡献中,参数分布聚类(PDC)是一种基于颜色和纹理线索的图像分割新方法。PDC模型的目标函数来源于最近提出的信息瓶颈框架(Tishby et al., 1999),但它可以等效地用最大似然解来表示。采用确定性退火方法对其进行优化。自然野生动物图像的分割结果。
Combined color and texture segmentation by parametric distributional clustering
Unsupervised image segmentation can be formulated as a clustering problem in which pixels or small image patches are grouped together based on local feature information. In this contribution, parametric distributional clustering (PDC) is presented as a novel approach to image segmentation based on color and texture clues. The objective function of the PDC model is derived from the recently proposed Information Bottleneck framework (Tishby et al., 1999), but it can equivalently be formulated in terms of a maximum likelihood solution. Its optimization is performed by deterministic annealing. Segmentation results are shown for natural wildlife imagery.