随机微分方程隐式milstein方法的数值模拟

R. Herdiana
{"title":"随机微分方程隐式milstein方法的数值模拟","authors":"R. Herdiana","doi":"10.14710/jfma.v3i1.7416","DOIUrl":null,"url":null,"abstract":"Stiff stochastic differential equations arise in many applications including in the area of biology. In this paper, we present numerical solution of stochastic differential equations representing the Malthus population model and SIS epidemic model, using the improved implicit Milstein method of order one proposed in [6]. The open source programming language SCILAB is used to perform the numerical simulations. Results show that the method is more accurate and stable compared to the implicit Euler method.","PeriodicalId":359074,"journal":{"name":"Journal of Fundamental Mathematics and Applications (JFMA)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NUMERICAL SIMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS USING IMPLICIT MILSTEIN METHOD\",\"authors\":\"R. Herdiana\",\"doi\":\"10.14710/jfma.v3i1.7416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stiff stochastic differential equations arise in many applications including in the area of biology. In this paper, we present numerical solution of stochastic differential equations representing the Malthus population model and SIS epidemic model, using the improved implicit Milstein method of order one proposed in [6]. The open source programming language SCILAB is used to perform the numerical simulations. Results show that the method is more accurate and stable compared to the implicit Euler method.\",\"PeriodicalId\":359074,\"journal\":{\"name\":\"Journal of Fundamental Mathematics and Applications (JFMA)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fundamental Mathematics and Applications (JFMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jfma.v3i1.7416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fundamental Mathematics and Applications (JFMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jfma.v3i1.7416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

刚性随机微分方程在包括生物学在内的许多领域都有应用。本文采用文献[6]中提出的改进的1阶隐式Milstein方法,给出了马尔萨斯种群模型和SIS流行病模型随机微分方程的数值解。采用开源编程语言SCILAB进行数值模拟。结果表明,与隐式欧拉方法相比,该方法具有更高的精度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NUMERICAL SIMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS USING IMPLICIT MILSTEIN METHOD
Stiff stochastic differential equations arise in many applications including in the area of biology. In this paper, we present numerical solution of stochastic differential equations representing the Malthus population model and SIS epidemic model, using the improved implicit Milstein method of order one proposed in [6]. The open source programming language SCILAB is used to perform the numerical simulations. Results show that the method is more accurate and stable compared to the implicit Euler method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A BACKTRACKING APPROACH FOR SOLVING PATH PUZZLES MATHEMATICAL MODEL OF MEASLES DISEASE SPREAD WITH TWO-DOSE VACCINATION AND TREATMENT FROZEN INITIAL LIABILITY METHOD TO DETERMINE NORMAL COST OF PENSION FUND WITH VASICEK INTEREST RATE MODEL TOPOLOGY OF QUASI-PSEUDOMETRIC SPACES AND CONTINUOUS LINEAR OPERATOR ON ASYMMETRIC NORMED SPACES FLOWER POLLINATION ALGORITHM (FPA): COMPARING SWITCH PROBABILITY BETWEEN CONSTANT 0.8 AND DOUBLE EXPONENTGUNAKAN DOUBLE EXPONENT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1