基于ARIMA和贝叶斯模型的润滑油退化轨迹预测

M. Tanwar, N. Raghavan
{"title":"基于ARIMA和贝叶斯模型的润滑油退化轨迹预测","authors":"M. Tanwar, N. Raghavan","doi":"10.1109/SDPC.2019.00114","DOIUrl":null,"url":null,"abstract":"In order to predict lubrication oil degradation, it is important to analyze the degradation trajectory in detail. Lubrication oil degradation is influenced by numerous factors e.g. oil replenishment, oil filtering, operating conditions and system maintenance etc. that need to be considered for accurate degradation prediction. Degradation trajectory prediction provides the remaining useful life (RUL). Whereas the analysis of degradation influencing factors with their roles in prediction provides opportunity to extend or control the RUL. This paper analyzes the lubrication oil degradation trajectory under the influence of oil replenishment. We consider a data correction strategy and prognosis for lubrication oil degradation using the auto-regressive integrated moving-average (ARIMA) and Bayesian dynamic linear model (BDLM) approaches. Degradation data is generated using model-based simulations. The prediction models are then tested on the simulated degradation data set. This study exemplifies the method to find the underlying degradation model considering and identifying the degradation influencing factors.","PeriodicalId":403595,"journal":{"name":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Lubrication Oil Degradation Trajectory Prognosis with ARIMA and Bayesian Models\",\"authors\":\"M. Tanwar, N. Raghavan\",\"doi\":\"10.1109/SDPC.2019.00114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to predict lubrication oil degradation, it is important to analyze the degradation trajectory in detail. Lubrication oil degradation is influenced by numerous factors e.g. oil replenishment, oil filtering, operating conditions and system maintenance etc. that need to be considered for accurate degradation prediction. Degradation trajectory prediction provides the remaining useful life (RUL). Whereas the analysis of degradation influencing factors with their roles in prediction provides opportunity to extend or control the RUL. This paper analyzes the lubrication oil degradation trajectory under the influence of oil replenishment. We consider a data correction strategy and prognosis for lubrication oil degradation using the auto-regressive integrated moving-average (ARIMA) and Bayesian dynamic linear model (BDLM) approaches. Degradation data is generated using model-based simulations. The prediction models are then tested on the simulated degradation data set. This study exemplifies the method to find the underlying degradation model considering and identifying the degradation influencing factors.\",\"PeriodicalId\":403595,\"journal\":{\"name\":\"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDPC.2019.00114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDPC.2019.00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了预测润滑油的降解,对润滑油的降解轨迹进行详细的分析是十分重要的。润滑油的降解受到许多因素的影响,如补油、机油过滤、运行条件和系统维护等,需要考虑这些因素才能进行准确的降解预测。退化轨迹预测提供剩余使用寿命(RUL)。而对退化影响因素及其在预测中的作用的分析,则为扩展或控制RUL提供了机会。分析了补油影响下润滑油的降解轨迹。本文采用自回归综合移动平均(ARIMA)和贝叶斯动态线性模型(BDLM)方法研究了润滑油退化的数据校正策略和预测。退化数据是使用基于模型的模拟生成的。然后在模拟退化数据集上对预测模型进行了测试。本研究举例说明了考虑和识别退化影响因素的方法来寻找潜在的退化模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lubrication Oil Degradation Trajectory Prognosis with ARIMA and Bayesian Models
In order to predict lubrication oil degradation, it is important to analyze the degradation trajectory in detail. Lubrication oil degradation is influenced by numerous factors e.g. oil replenishment, oil filtering, operating conditions and system maintenance etc. that need to be considered for accurate degradation prediction. Degradation trajectory prediction provides the remaining useful life (RUL). Whereas the analysis of degradation influencing factors with their roles in prediction provides opportunity to extend or control the RUL. This paper analyzes the lubrication oil degradation trajectory under the influence of oil replenishment. We consider a data correction strategy and prognosis for lubrication oil degradation using the auto-regressive integrated moving-average (ARIMA) and Bayesian dynamic linear model (BDLM) approaches. Degradation data is generated using model-based simulations. The prediction models are then tested on the simulated degradation data set. This study exemplifies the method to find the underlying degradation model considering and identifying the degradation influencing factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Reliability Optimization Allocation Method of Control Rod Drive Mechanism Based on GO Method Lubrication Oil Degradation Trajectory Prognosis with ARIMA and Bayesian Models Algorithm for Measuring Attitude Angle of Intelligent Ammunition with Magnetometer/GNSS Estimation of Spectrum Envelope for Gear Motor Monitoring Using A Laser Doppler Velocimeter Reliability Optimization Allocation Method Based on Improved Dynamic Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1