一种新的空间图像恢复方法

T. Pham, U. Eisenblatter
{"title":"一种新的空间图像恢复方法","authors":"T. Pham, U. Eisenblatter","doi":"10.1109/IPTA.2008.4743759","DOIUrl":null,"url":null,"abstract":"Study in restoring images from their degraded states has been an important research topic in image processing and has potential applications in complex pattern recognition. We propose in this paper a new adaptive image restoration method using the concept of random-function realizations in geostatistics. This conceptual framework allows us to derive the model means and variances in the context of spatial statistics. Experimental results demonstrate the superior performance of the proposed approach to other image restoration algorithms.","PeriodicalId":384072,"journal":{"name":"2008 First Workshops on Image Processing Theory, Tools and Applications","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Spatial Approach to Image Restoration\",\"authors\":\"T. Pham, U. Eisenblatter\",\"doi\":\"10.1109/IPTA.2008.4743759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Study in restoring images from their degraded states has been an important research topic in image processing and has potential applications in complex pattern recognition. We propose in this paper a new adaptive image restoration method using the concept of random-function realizations in geostatistics. This conceptual framework allows us to derive the model means and variances in the context of spatial statistics. Experimental results demonstrate the superior performance of the proposed approach to other image restoration algorithms.\",\"PeriodicalId\":384072,\"journal\":{\"name\":\"2008 First Workshops on Image Processing Theory, Tools and Applications\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 First Workshops on Image Processing Theory, Tools and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2008.4743759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First Workshops on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2008.4743759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从退化状态中恢复图像一直是图像处理领域的重要研究课题,在复杂模式识别中具有潜在的应用前景。本文利用地统计学中的随机函数实现概念,提出了一种新的自适应图像恢复方法。这个概念框架使我们能够在空间统计的背景下推导模型均值和方差。实验结果表明,该方法与其他图像恢复算法相比具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Spatial Approach to Image Restoration
Study in restoring images from their degraded states has been an important research topic in image processing and has potential applications in complex pattern recognition. We propose in this paper a new adaptive image restoration method using the concept of random-function realizations in geostatistics. This conceptual framework allows us to derive the model means and variances in the context of spatial statistics. Experimental results demonstrate the superior performance of the proposed approach to other image restoration algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Altered Image Alignment Technique for 3D Motion Estimation of a Reflective Sphere A New Approach to Face Image Coding using Gabor Wavelet Networks Artificial Neural Networks Based Image Processing & Pattern Recognition: From Concepts to Real-World Applications A New Spatial Approach to Image Restoration Detection and Counting of "in vivo" cells to predict cell migratory potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1