PageRank随机系统模型的参数估计

Cody E. Clifton, B. Pasik-Duncan
{"title":"PageRank随机系统模型的参数估计","authors":"Cody E. Clifton, B. Pasik-Duncan","doi":"10.1137/1.9781611974072.59","DOIUrl":null,"url":null,"abstract":"The PageRank algorithm is used by Google as a way of hierarchically indexing web pages in order to provide relevant and reputable search results. Fundamentally, this algorithm relies on the hypertextual nature of the World Wide Web; indeed, the PageRank vector can be computed based simply on the hyperlink structure of every page in the web. In this paper, we consider a model for PageRank whose dynamics are described by a stochastic system and we establish strong consistency of the least squares estimator of an unknown parameter in this system. Furthermore, motivated by recent work on distributed randomized methods for computing PageRank, we show that the least squares estimator remains strongly consistent within a distributed framework.","PeriodicalId":193106,"journal":{"name":"SIAM Conf. on Control and its Applications","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parameter Estimation in a Stochastic System Model for PageRank\",\"authors\":\"Cody E. Clifton, B. Pasik-Duncan\",\"doi\":\"10.1137/1.9781611974072.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The PageRank algorithm is used by Google as a way of hierarchically indexing web pages in order to provide relevant and reputable search results. Fundamentally, this algorithm relies on the hypertextual nature of the World Wide Web; indeed, the PageRank vector can be computed based simply on the hyperlink structure of every page in the web. In this paper, we consider a model for PageRank whose dynamics are described by a stochastic system and we establish strong consistency of the least squares estimator of an unknown parameter in this system. Furthermore, motivated by recent work on distributed randomized methods for computing PageRank, we show that the least squares estimator remains strongly consistent within a distributed framework.\",\"PeriodicalId\":193106,\"journal\":{\"name\":\"SIAM Conf. on Control and its Applications\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Conf. on Control and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611974072.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Conf. on Control and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974072.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

PageRank算法被Google用作分层索引网页的一种方式,以提供相关和有信誉的搜索结果。从根本上说,这个算法依赖于万维网的超文本特性;事实上,PageRank向量可以简单地基于网络中每个页面的超链接结构来计算。本文考虑了一个动态由随机系统描述的PageRank模型,并在该模型中建立了未知参数最小二乘估计的强相合性。此外,受最近关于计算PageRank的分布式随机方法的工作的启发,我们表明最小二乘估计量在分布式框架内保持强一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter Estimation in a Stochastic System Model for PageRank
The PageRank algorithm is used by Google as a way of hierarchically indexing web pages in order to provide relevant and reputable search results. Fundamentally, this algorithm relies on the hypertextual nature of the World Wide Web; indeed, the PageRank vector can be computed based simply on the hyperlink structure of every page in the web. In this paper, we consider a model for PageRank whose dynamics are described by a stochastic system and we establish strong consistency of the least squares estimator of an unknown parameter in this system. Furthermore, motivated by recent work on distributed randomized methods for computing PageRank, we show that the least squares estimator remains strongly consistent within a distributed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards a minimum L2-norm exact control of the Pauli equation Diffusive Realization of a Lyapunov Equation Solution, and Parallel Algorithms Implementation A Variable Reference Trajectory for Model-Free Glycemia Regulation Metzler Matrix Transform Determination using a Nonsmooth Optimization Technique with an Application to Interval Observers Identification of the Fragmentation Role in the Amyloid Assembling Processes and Application to their Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1