Mio: GHC的高性能多核io管理器

A. Voellmy, Junchang Wang, P. Hudak, Kazuhiko Yamamoto
{"title":"Mio: GHC的高性能多核io管理器","authors":"A. Voellmy, Junchang Wang, P. Hudak, Kazuhiko Yamamoto","doi":"10.1145/2503778.2503790","DOIUrl":null,"url":null,"abstract":"Haskell threads provide a key, lightweight concurrency abstraction to simplify the programming of important network applications such as web servers and software-defined network (SDN) controllers. The flagship Glasgow Haskell Compiler (GHC) introduces a run-time system (RTS) to achieve a high-performance multicore implementation of Haskell threads, by introducing effective components such as a multicore scheduler, a parallel garbage collector, an IO manager, and efficient multicore memory allocation. Evaluations of the GHC RTS, however, show that it does not scale well on multicore processors, leading to poor performance of many network applications that try to use lightweight Haskell threads. In this paper, we show that the GHC IO manager, which is a crucial component of the GHC RTS, is the scaling bottleneck. Through a series of experiments, we identify key data structure, scheduling, and dispatching bottlenecks of the GHC IO manager. We then design a new multicore IO manager named Mio that eliminates all these bottlenecks. Our evaluations show that the new Mio manager improves realistic web server throughput by 6.5x and reduces expected web server response time by 5.7x. We also show that with Mio, McNettle (an SDN controller written in Haskell) can scale effectively to 40+ cores, reach a throughput of over 20 million new requests per second on a single machine, and hence become the fastest of all existing SDN controllers.","PeriodicalId":188691,"journal":{"name":"ACM SIGPLAN Symposium/Workshop on Haskell","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Mio: a high-performance multicore io manager for GHC\",\"authors\":\"A. Voellmy, Junchang Wang, P. Hudak, Kazuhiko Yamamoto\",\"doi\":\"10.1145/2503778.2503790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Haskell threads provide a key, lightweight concurrency abstraction to simplify the programming of important network applications such as web servers and software-defined network (SDN) controllers. The flagship Glasgow Haskell Compiler (GHC) introduces a run-time system (RTS) to achieve a high-performance multicore implementation of Haskell threads, by introducing effective components such as a multicore scheduler, a parallel garbage collector, an IO manager, and efficient multicore memory allocation. Evaluations of the GHC RTS, however, show that it does not scale well on multicore processors, leading to poor performance of many network applications that try to use lightweight Haskell threads. In this paper, we show that the GHC IO manager, which is a crucial component of the GHC RTS, is the scaling bottleneck. Through a series of experiments, we identify key data structure, scheduling, and dispatching bottlenecks of the GHC IO manager. We then design a new multicore IO manager named Mio that eliminates all these bottlenecks. Our evaluations show that the new Mio manager improves realistic web server throughput by 6.5x and reduces expected web server response time by 5.7x. We also show that with Mio, McNettle (an SDN controller written in Haskell) can scale effectively to 40+ cores, reach a throughput of over 20 million new requests per second on a single machine, and hence become the fastest of all existing SDN controllers.\",\"PeriodicalId\":188691,\"journal\":{\"name\":\"ACM SIGPLAN Symposium/Workshop on Haskell\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium/Workshop on Haskell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2503778.2503790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium/Workshop on Haskell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2503778.2503790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

Haskell线程提供了一个关键的轻量级并发抽象,以简化重要网络应用程序(如web服务器和软件定义网络(SDN)控制器)的编程。旗舰产品格拉斯哥Haskell编译器(GHC)引入了一个运行时系统(RTS),通过引入有效的组件,如多核调度程序、并行垃圾收集器、IO管理器和高效的多核内存分配,来实现高性能的多核Haskell线程实现。然而,对GHC RTS的评估表明,它不能很好地在多核处理器上扩展,导致许多尝试使用轻量级Haskell线程的网络应用程序性能不佳。在本文中,我们证明了GHC IO管理器是GHC RTS的关键组件,是可扩展性的瓶颈。通过一系列实验,我们确定了GHC IO管理器的关键数据结构、调度和调度瓶颈。然后,我们设计了一个新的多核IO管理器,名为Mio,它消除了所有这些瓶颈。我们的评估表明,新的Mio管理器将实际的web服务器吞吐量提高了6.5倍,并将预期的web服务器响应时间减少了5.7倍。我们还表明,使用Mio, McNettle(用Haskell编写的SDN控制器)可以有效地扩展到40+核,在一台机器上达到每秒超过2000万个新请求的吞吐量,因此成为所有现有SDN控制器中最快的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mio: a high-performance multicore io manager for GHC
Haskell threads provide a key, lightweight concurrency abstraction to simplify the programming of important network applications such as web servers and software-defined network (SDN) controllers. The flagship Glasgow Haskell Compiler (GHC) introduces a run-time system (RTS) to achieve a high-performance multicore implementation of Haskell threads, by introducing effective components such as a multicore scheduler, a parallel garbage collector, an IO manager, and efficient multicore memory allocation. Evaluations of the GHC RTS, however, show that it does not scale well on multicore processors, leading to poor performance of many network applications that try to use lightweight Haskell threads. In this paper, we show that the GHC IO manager, which is a crucial component of the GHC RTS, is the scaling bottleneck. Through a series of experiments, we identify key data structure, scheduling, and dispatching bottlenecks of the GHC IO manager. We then design a new multicore IO manager named Mio that eliminates all these bottlenecks. Our evaluations show that the new Mio manager improves realistic web server throughput by 6.5x and reduces expected web server response time by 5.7x. We also show that with Mio, McNettle (an SDN controller written in Haskell) can scale effectively to 40+ cores, reach a throughput of over 20 million new requests per second on a single machine, and hence become the fastest of all existing SDN controllers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mio: a high-performance multicore io manager for GHC Understanding idiomatic traversals backwards and forwards An EDSL approach to high performance Haskell programming Causality of optimized Haskell: what is burning our cycles? Splittable pseudorandom number generators using cryptographic hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1