基于Beneish M-Score模型的增强型人工智能实施在防止财务报表舞弊中的有效性分析

K. Deniswara, M. Jonathan, Archie Nathanael Mulyawan, Irvan Santoso
{"title":"基于Beneish M-Score模型的增强型人工智能实施在防止财务报表舞弊中的有效性分析","authors":"K. Deniswara, M. Jonathan, Archie Nathanael Mulyawan, Irvan Santoso","doi":"10.1145/3572647.3572695","DOIUrl":null,"url":null,"abstract":"This study aims to analyze the effectiveness of augmented artificial intelligence implementation, which is PwC's GL.ai, in preventing fraudulent financial statement by utilizing Beneish M-Score model. The population of this study is all PwC Indonesia's clients that are listed in Indonesia Stock Exchange for the period of 2017-2021. Purposive sampling is used as sampling procedure and paired sample t-test, effect size statistic, along with statistic descriptive test are applied as the data analysis methods of this study, By utilizing Beneish M-Score model as a proxy to calculate the likelihood of manipulation in companies’ financial statements, this study concludes that the implementation of augmented artificial intelligence, namely PwC's GL.ai is an effective treatment to prevent the probability of fraudulent financial statement from occurring.","PeriodicalId":118352,"journal":{"name":"Proceedings of the 2022 6th International Conference on E-Business and Internet","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis on The Effectiveness of Augmented Artificial Intelligence Implementation in Preventing Fraudulent Financial Statement by Utilizing Beneish M-Score Model\",\"authors\":\"K. Deniswara, M. Jonathan, Archie Nathanael Mulyawan, Irvan Santoso\",\"doi\":\"10.1145/3572647.3572695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to analyze the effectiveness of augmented artificial intelligence implementation, which is PwC's GL.ai, in preventing fraudulent financial statement by utilizing Beneish M-Score model. The population of this study is all PwC Indonesia's clients that are listed in Indonesia Stock Exchange for the period of 2017-2021. Purposive sampling is used as sampling procedure and paired sample t-test, effect size statistic, along with statistic descriptive test are applied as the data analysis methods of this study, By utilizing Beneish M-Score model as a proxy to calculate the likelihood of manipulation in companies’ financial statements, this study concludes that the implementation of augmented artificial intelligence, namely PwC's GL.ai is an effective treatment to prevent the probability of fraudulent financial statement from occurring.\",\"PeriodicalId\":118352,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on E-Business and Internet\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on E-Business and Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3572647.3572695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on E-Business and Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572647.3572695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在分析增强人工智能实施的有效性,即普华永道的GL.ai,利用Beneish M-Score模型防止欺诈性财务报表。本研究的人口是普华永道印度尼西亚在2017-2021年期间在印度尼西亚证券交易所上市的所有客户。本研究采用有目的抽样作为抽样程序,并采用配对样本t检验、效应量统计以及统计描述性检验作为数据分析方法,利用Beneish M-Score模型作为代理计算公司财务报表被操纵的可能性,本研究得出增强人工智能的实施,即普华永道的GL.ai是防止虚假财务报表发生概率的有效处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis on The Effectiveness of Augmented Artificial Intelligence Implementation in Preventing Fraudulent Financial Statement by Utilizing Beneish M-Score Model
This study aims to analyze the effectiveness of augmented artificial intelligence implementation, which is PwC's GL.ai, in preventing fraudulent financial statement by utilizing Beneish M-Score model. The population of this study is all PwC Indonesia's clients that are listed in Indonesia Stock Exchange for the period of 2017-2021. Purposive sampling is used as sampling procedure and paired sample t-test, effect size statistic, along with statistic descriptive test are applied as the data analysis methods of this study, By utilizing Beneish M-Score model as a proxy to calculate the likelihood of manipulation in companies’ financial statements, this study concludes that the implementation of augmented artificial intelligence, namely PwC's GL.ai is an effective treatment to prevent the probability of fraudulent financial statement from occurring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Correlation between CBCFI and Carbon Trading Price Mining from An Econometric Perspective Analysis on The Effectiveness of Augmented Artificial Intelligence Implementation in Preventing Fraudulent Financial Statement by Utilizing Beneish M-Score Model An IS-LM Equilibrium Analysis on Trade Balance and Exchange Rate during the China-US Trade Therabeats: Business Strategies for the Proposed Psychotherapy Telemedicine using SWOT Analysis and the Six Thinking Hats How does Basic Psychological Need Satisfaction Affect Knowledge Sharing Behavior in Online Health Communities: An Empirical Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1