驯悍:通过java垃圾收集器的自动参数调优来提高性能

Philipp Lengauer, H. Mössenböck
{"title":"驯悍:通过java垃圾收集器的自动参数调优来提高性能","authors":"Philipp Lengauer, H. Mössenböck","doi":"10.1145/2568088.2568091","DOIUrl":null,"url":null,"abstract":"Garbage collection, if not tuned properly, can considerably impact application performance. Unfortunately, configuring a garbage collector is a tedious task as only few guidelines exist and tuning is often done by trial and error. We present what is, to our knowledge, the first published work on automatically tuning Java garbage collectors in a black-box manner considering all available parameters. We propose the use of iterated local search methods to automatically compute application-specific garbage collector configurations. Our experiments show that automatic tuning can reduce garbage collection time by up to 77% for a specific application and a specific workload and by 35% on average across all benchmarks (compared to the default configuration). We evaluated our approach for 3 different garbage collectors on the DaCapo and SPECjbb benchmarks, as well as on a real-world industrial application.","PeriodicalId":243233,"journal":{"name":"Proceedings of the 5th ACM/SPEC international conference on Performance engineering","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"The taming of the shrew: increasing performance by automatic parameter tuning for java garbage collectors\",\"authors\":\"Philipp Lengauer, H. Mössenböck\",\"doi\":\"10.1145/2568088.2568091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Garbage collection, if not tuned properly, can considerably impact application performance. Unfortunately, configuring a garbage collector is a tedious task as only few guidelines exist and tuning is often done by trial and error. We present what is, to our knowledge, the first published work on automatically tuning Java garbage collectors in a black-box manner considering all available parameters. We propose the use of iterated local search methods to automatically compute application-specific garbage collector configurations. Our experiments show that automatic tuning can reduce garbage collection time by up to 77% for a specific application and a specific workload and by 35% on average across all benchmarks (compared to the default configuration). We evaluated our approach for 3 different garbage collectors on the DaCapo and SPECjbb benchmarks, as well as on a real-world industrial application.\",\"PeriodicalId\":243233,\"journal\":{\"name\":\"Proceedings of the 5th ACM/SPEC international conference on Performance engineering\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th ACM/SPEC international conference on Performance engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2568088.2568091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM/SPEC international conference on Performance engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2568088.2568091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

垃圾收集如果调优不当,会对应用程序性能产生很大影响。不幸的是,配置垃圾收集器是一项繁琐的任务,因为只有很少的指导方针,而且调优通常是通过反复试验来完成的。据我们所知,这是关于以黑盒方式考虑所有可用参数自动调优Java垃圾收集器的第一篇已发表的文章。我们建议使用迭代本地搜索方法来自动计算特定于应用程序的垃圾收集器配置。我们的实验表明,自动调优可以将特定应用程序和特定工作负载的垃圾收集时间减少77%,在所有基准测试中平均减少35%(与默认配置相比)。我们在DaCapo和SPECjbb基准测试中针对3种不同的垃圾收集器以及实际的工业应用程序评估了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The taming of the shrew: increasing performance by automatic parameter tuning for java garbage collectors
Garbage collection, if not tuned properly, can considerably impact application performance. Unfortunately, configuring a garbage collector is a tedious task as only few guidelines exist and tuning is often done by trial and error. We present what is, to our knowledge, the first published work on automatically tuning Java garbage collectors in a black-box manner considering all available parameters. We propose the use of iterated local search methods to automatically compute application-specific garbage collector configurations. Our experiments show that automatic tuning can reduce garbage collection time by up to 77% for a specific application and a specific workload and by 35% on average across all benchmarks (compared to the default configuration). We evaluated our approach for 3 different garbage collectors on the DaCapo and SPECjbb benchmarks, as well as on a real-world industrial application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The taming of the shrew: increasing performance by automatic parameter tuning for java garbage collectors Uncertainties in the modeling of self-adaptive systems: a taxonomy and an example of availability evaluation Scalable hybrid stream and hadoop network analysis system Efficient optimization of software performance models via parameter-space pruning Real-time multi-cloud management needs application awareness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1