利用遗传算法发现最大距离码

K. Dontas, K. A. Jong
{"title":"利用遗传算法发现最大距离码","authors":"K. Dontas, K. A. Jong","doi":"10.1109/TAI.1990.130442","DOIUrl":null,"url":null,"abstract":"An application of genetic algorithms to the problem of discovering communication codes with properties useful for error corrections is described. Search spaces for these codes are so large as to rule out any exhaustive search strategy. Coding theory provides a rich and interesting domain for genetic algorithms. There are some coding problems about which a lot is known and good codes can be generated systematically. On the other hand, there are problem areas where little can be said about the characteristics of the codes in advance. Genetic algorithms have been advocated for these kinds of problems where domain knowledge is either limited or hard to represent and formalize. The authors describe some initial experiments on the use of genetic algorithms to discover maximal distance codes, and discuss the potential advantage of genetic algorithms in this problem domain.<<ETX>>","PeriodicalId":366276,"journal":{"name":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Discovery of maximal distance codes using genetic algorithms\",\"authors\":\"K. Dontas, K. A. Jong\",\"doi\":\"10.1109/TAI.1990.130442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An application of genetic algorithms to the problem of discovering communication codes with properties useful for error corrections is described. Search spaces for these codes are so large as to rule out any exhaustive search strategy. Coding theory provides a rich and interesting domain for genetic algorithms. There are some coding problems about which a lot is known and good codes can be generated systematically. On the other hand, there are problem areas where little can be said about the characteristics of the codes in advance. Genetic algorithms have been advocated for these kinds of problems where domain knowledge is either limited or hard to represent and formalize. The authors describe some initial experiments on the use of genetic algorithms to discover maximal distance codes, and discuss the potential advantage of genetic algorithms in this problem domain.<<ETX>>\",\"PeriodicalId\":366276,\"journal\":{\"name\":\"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1990.130442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1990.130442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

描述了遗传算法在发现通信码的问题上的应用,这些通信码具有对纠错有用的属性。这些代码的搜索空间是如此之大,以至于排除了任何穷举搜索策略。编码理论为遗传算法提供了一个丰富而有趣的领域。有一些编码问题是已知的,并且可以系统地生成好的代码。另一方面,也存在一些问题领域,在这些领域中,我们几乎无法事先了解代码的特性。遗传算法已被提倡用于这些领域知识有限或难以表示和形式化的问题。作者描述了一些使用遗传算法来发现最大距离码的初步实验,并讨论了遗传算法在该问题领域的潜在优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovery of maximal distance codes using genetic algorithms
An application of genetic algorithms to the problem of discovering communication codes with properties useful for error corrections is described. Search spaces for these codes are so large as to rule out any exhaustive search strategy. Coding theory provides a rich and interesting domain for genetic algorithms. There are some coding problems about which a lot is known and good codes can be generated systematically. On the other hand, there are problem areas where little can be said about the characteristics of the codes in advance. Genetic algorithms have been advocated for these kinds of problems where domain knowledge is either limited or hard to represent and formalize. The authors describe some initial experiments on the use of genetic algorithms to discover maximal distance codes, and discuss the potential advantage of genetic algorithms in this problem domain.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning steppingstones for problem solving Conventional and associative memory-based spelling checkers Relationships in an object knowledge representation model A tool for building decision-support-oriented expert systems Generation of feature detectors for texture discrimination by genetic search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1