最大距离贴现和加权重访周期:一种持久无人监视的实用方法

C. Olsen, K. Kalyanam, W. Baker, D. Kunz
{"title":"最大距离贴现和加权重访周期:一种持久无人监视的实用方法","authors":"C. Olsen, K. Kalyanam, W. Baker, D. Kunz","doi":"10.1142/S2301385019500079","DOIUrl":null,"url":null,"abstract":"Autonomous unmanned vehicles are well suited for long-endurance, persistent intelligence, surveillance and reconnaissance (PISR) missions. In order to conduct missions, vehicles must implement a method of task selection. We propose the Maximal Distance Discounted & Weighted Revisit Period ([Formula: see text]) utility function as a solution. We derive [Formula: see text] as a zeroth-order approximation to an infinite horizon solution of PISR when formulated as a dynamic programming (DP) problem. We then use the DP solution to develop a heuristic utility function for autonomous task selections, with the goal of minimizing the prioritized revisit time to each task. Our function adapts to different task maps and task priorities, is scalable in the number of tasks, and is robust to the ad-hoc addition or removal of tasks. We demonstrate how the [Formula: see text] parameters influence vehicle behavior. We also prove that the policy results in steady-state task selections that are periodic and that such periodicity occurs regardless of initial conditions. We then demonstrate periodicity via numerical simulations on a set of test scenarios. We present a two-step heuristic methodology for selecting utility function parameters that deliver empirically good performance, which we demonstrate through a simulation-based comparison to a single-vehicle Traveling Salesman Problem (TSP) solution. The comparisons are based on four sample task maps designed to resemble operational scenarios.","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Maximal Distance Discounted and Weighted Revisit Period: A Utility Approach to Persistent Unmanned Surveillance\",\"authors\":\"C. Olsen, K. Kalyanam, W. Baker, D. Kunz\",\"doi\":\"10.1142/S2301385019500079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous unmanned vehicles are well suited for long-endurance, persistent intelligence, surveillance and reconnaissance (PISR) missions. In order to conduct missions, vehicles must implement a method of task selection. We propose the Maximal Distance Discounted & Weighted Revisit Period ([Formula: see text]) utility function as a solution. We derive [Formula: see text] as a zeroth-order approximation to an infinite horizon solution of PISR when formulated as a dynamic programming (DP) problem. We then use the DP solution to develop a heuristic utility function for autonomous task selections, with the goal of minimizing the prioritized revisit time to each task. Our function adapts to different task maps and task priorities, is scalable in the number of tasks, and is robust to the ad-hoc addition or removal of tasks. We demonstrate how the [Formula: see text] parameters influence vehicle behavior. We also prove that the policy results in steady-state task selections that are periodic and that such periodicity occurs regardless of initial conditions. We then demonstrate periodicity via numerical simulations on a set of test scenarios. We present a two-step heuristic methodology for selecting utility function parameters that deliver empirically good performance, which we demonstrate through a simulation-based comparison to a single-vehicle Traveling Salesman Problem (TSP) solution. The comparisons are based on four sample task maps designed to resemble operational scenarios.\",\"PeriodicalId\":164619,\"journal\":{\"name\":\"Unmanned Syst.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Unmanned Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2301385019500079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unmanned Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2301385019500079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

自主无人驾驶车辆非常适合长航时、持久的情报、监视和侦察(PISR)任务。为了执行任务,飞行器必须执行任务选择方法。我们提出了最大距离贴现和加权重访周期([公式:见文本])效用函数作为解决方案。当我们将[公式:见文本]表述为动态规划(DP)问题时,我们将其作为PISR无限视界解的零阶近似。然后,我们使用DP解决方案开发用于自主任务选择的启发式实用函数,其目标是最小化每个任务的优先级重访时间。我们的功能适应不同的任务映射和任务优先级,在任务数量上是可扩展的,并且对于临时添加或删除任务是健壮的。我们演示了[公式:见文本]参数如何影响车辆行为。我们还证明了该策略的结果是周期性的稳态任务选择,并且无论初始条件如何,这种周期性都会发生。然后,我们通过一组测试场景的数值模拟来演示周期性。我们提出了一种两步启发式方法,用于选择提供经验良好性能的效用函数参数,我们通过与单车辆旅行推销员问题(TSP)解决方案的模拟比较来证明这一点。这些比较基于四个类似于操作场景的示例任务图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximal Distance Discounted and Weighted Revisit Period: A Utility Approach to Persistent Unmanned Surveillance
Autonomous unmanned vehicles are well suited for long-endurance, persistent intelligence, surveillance and reconnaissance (PISR) missions. In order to conduct missions, vehicles must implement a method of task selection. We propose the Maximal Distance Discounted & Weighted Revisit Period ([Formula: see text]) utility function as a solution. We derive [Formula: see text] as a zeroth-order approximation to an infinite horizon solution of PISR when formulated as a dynamic programming (DP) problem. We then use the DP solution to develop a heuristic utility function for autonomous task selections, with the goal of minimizing the prioritized revisit time to each task. Our function adapts to different task maps and task priorities, is scalable in the number of tasks, and is robust to the ad-hoc addition or removal of tasks. We demonstrate how the [Formula: see text] parameters influence vehicle behavior. We also prove that the policy results in steady-state task selections that are periodic and that such periodicity occurs regardless of initial conditions. We then demonstrate periodicity via numerical simulations on a set of test scenarios. We present a two-step heuristic methodology for selecting utility function parameters that deliver empirically good performance, which we demonstrate through a simulation-based comparison to a single-vehicle Traveling Salesman Problem (TSP) solution. The comparisons are based on four sample task maps designed to resemble operational scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Special Issue on Perception, Decision and Control of Unmanned Systems Under Complex Conditions Modeling and Quantitative Evaluation Method of Environmental Complexity for Measuring Autonomous Capabilities of Military Unmanned Ground Vehicles Recent Developments in Event-Triggered Control of Nonlinear Systems: An Overview Physical Modeling, Simulation and Validation of Small Fixed-Wing UAV An Improved RRT* UAV Formation Path Planning Algorithm Based on Goal Bias and Node Rejection Strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1