动态杀伤飞行器侧装窗口定位算法及姿态控制器设计

Lu Cang-hai, Cai Yuan-li, Zhi Qiang
{"title":"动态杀伤飞行器侧装窗口定位算法及姿态控制器设计","authors":"Lu Cang-hai, Cai Yuan-li, Zhi Qiang","doi":"10.1109/IMCCC.2014.75","DOIUrl":null,"url":null,"abstract":"Side-window detection technology is adopted by the kinetic kill vehicle (KKV) to solve the problem of aerodynamic heat induced by the high speed. A new side-window orientation algorithm is proposed to adjust the KKV attitude angles according to the line-of-sight (LOS) angles to achieve stable and accurate tracking of the target. The time-scale separation methodology is adopted to implement the side window algorithm. The attitude thrusters are activated in pulse mode, and the pulse-width pulse-frequency (PWPF) modulation is adopted to control the thrusters firing. PWPF modulation is a control method that provides pseudo-linear operation for an on-off thruster. PWPF modulator holds several advantages over classical bang-bang controllers such as close to linear operation, high accuracy, and reduced propellant consumption. A modified PWPF modulator with threshold limitation is adopted in this paper to reduce the number of thruster firings and fuel consumption at a possible cost of control accuracy. The control scheme is verified using computer simulation. The results have been proven the potential of this scheme.","PeriodicalId":152074,"journal":{"name":"2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Side-Mounted Window Orientation Algorithm and Attitude Controller Design for Kinetic Kill Vehicle\",\"authors\":\"Lu Cang-hai, Cai Yuan-li, Zhi Qiang\",\"doi\":\"10.1109/IMCCC.2014.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Side-window detection technology is adopted by the kinetic kill vehicle (KKV) to solve the problem of aerodynamic heat induced by the high speed. A new side-window orientation algorithm is proposed to adjust the KKV attitude angles according to the line-of-sight (LOS) angles to achieve stable and accurate tracking of the target. The time-scale separation methodology is adopted to implement the side window algorithm. The attitude thrusters are activated in pulse mode, and the pulse-width pulse-frequency (PWPF) modulation is adopted to control the thrusters firing. PWPF modulation is a control method that provides pseudo-linear operation for an on-off thruster. PWPF modulator holds several advantages over classical bang-bang controllers such as close to linear operation, high accuracy, and reduced propellant consumption. A modified PWPF modulator with threshold limitation is adopted in this paper to reduce the number of thruster firings and fuel consumption at a possible cost of control accuracy. The control scheme is verified using computer simulation. The results have been proven the potential of this scheme.\",\"PeriodicalId\":152074,\"journal\":{\"name\":\"2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCCC.2014.75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCCC.2014.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了解决高速飞行引起的气动热问题,KKV采用了侧窗探测技术。提出了一种新的侧窗定位算法,根据视距角度调整KKV姿态角,实现对目标的稳定精确跟踪。采用时尺度分离方法实现侧窗算法。采用脉冲方式激活姿态推力器,采用脉宽脉频调制控制姿态推力器发射。PWPF调制是一种为开关推力器提供伪线性操作的控制方法。与经典的bang-bang控制器相比,PWPF调制器具有几个优点,例如接近线性操作,精度高,减少推进剂消耗。本文采用一种带有阈值限制的改进型PWPF调制器,以减少推进器点火次数和燃料消耗,但可能以控制精度为代价。通过计算机仿真对控制方案进行了验证。实验结果证明了该方案的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Side-Mounted Window Orientation Algorithm and Attitude Controller Design for Kinetic Kill Vehicle
Side-window detection technology is adopted by the kinetic kill vehicle (KKV) to solve the problem of aerodynamic heat induced by the high speed. A new side-window orientation algorithm is proposed to adjust the KKV attitude angles according to the line-of-sight (LOS) angles to achieve stable and accurate tracking of the target. The time-scale separation methodology is adopted to implement the side window algorithm. The attitude thrusters are activated in pulse mode, and the pulse-width pulse-frequency (PWPF) modulation is adopted to control the thrusters firing. PWPF modulation is a control method that provides pseudo-linear operation for an on-off thruster. PWPF modulator holds several advantages over classical bang-bang controllers such as close to linear operation, high accuracy, and reduced propellant consumption. A modified PWPF modulator with threshold limitation is adopted in this paper to reduce the number of thruster firings and fuel consumption at a possible cost of control accuracy. The control scheme is verified using computer simulation. The results have been proven the potential of this scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on SNR Estimation Algorithm in FH System Users Classification on Broadcast and Television System Based on Statistical Analysis System Software Research on UV Flame Detector Design of Aircraft Power Subsystem Simulation Exciter Side-Mounted Window Orientation Algorithm and Attitude Controller Design for Kinetic Kill Vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1