{"title":"基于SMI算法的自适应阵列天线权值收敛分析","authors":"Y. Hara","doi":"10.1109/IZSBC.2002.991746","DOIUrl":null,"url":null,"abstract":"The weight convergence analysis of adaptive array antennas based on a sample matrix inversion (SMI) algorithm is presented. Firstly, we derive the required number of samples for weight computation to achieve an output signal-to-interference-plus-noise ratio (SINR) -10 log/sub 10/ r [dB] (r/spl les/1) below an optimum value. Next, we present the weight convergence of CDMA adaptive array antennas based on the SMI algorithm, where two types of weight computational methods are compared between \"chip-level computation\" and \"symbol-level computation\". Analytical and simulation results reveal that \"chip-level computation\" before the despreading process enables faster convergence than \"symbol-level computation\" after the despreading process.","PeriodicalId":336991,"journal":{"name":"2002 International Zurich Seminar on Broadband Communications Access - Transmission - Networking (Cat. No.02TH8599)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Weight convergence analysis of adaptive array antennas based on SMI algorithm\",\"authors\":\"Y. Hara\",\"doi\":\"10.1109/IZSBC.2002.991746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The weight convergence analysis of adaptive array antennas based on a sample matrix inversion (SMI) algorithm is presented. Firstly, we derive the required number of samples for weight computation to achieve an output signal-to-interference-plus-noise ratio (SINR) -10 log/sub 10/ r [dB] (r/spl les/1) below an optimum value. Next, we present the weight convergence of CDMA adaptive array antennas based on the SMI algorithm, where two types of weight computational methods are compared between \\\"chip-level computation\\\" and \\\"symbol-level computation\\\". Analytical and simulation results reveal that \\\"chip-level computation\\\" before the despreading process enables faster convergence than \\\"symbol-level computation\\\" after the despreading process.\",\"PeriodicalId\":336991,\"journal\":{\"name\":\"2002 International Zurich Seminar on Broadband Communications Access - Transmission - Networking (Cat. No.02TH8599)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 International Zurich Seminar on Broadband Communications Access - Transmission - Networking (Cat. No.02TH8599)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IZSBC.2002.991746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 International Zurich Seminar on Broadband Communications Access - Transmission - Networking (Cat. No.02TH8599)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IZSBC.2002.991746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
提出了一种基于样本矩阵反演(SMI)算法的自适应阵列天线权值收敛分析方法。首先,我们推导出权重计算所需的样本数,以实现低于最佳值的输出信噪比(SINR) -10 log/sub 10/ r [dB] (r/spl les/1)。其次,提出了基于SMI算法的CDMA自适应阵列天线的权值收敛问题,比较了“芯片级计算”和“符号级计算”两种权值计算方法。分析和仿真结果表明,解扩前的“芯片级计算”比解扩后的“符号级计算”收敛速度更快。
Weight convergence analysis of adaptive array antennas based on SMI algorithm
The weight convergence analysis of adaptive array antennas based on a sample matrix inversion (SMI) algorithm is presented. Firstly, we derive the required number of samples for weight computation to achieve an output signal-to-interference-plus-noise ratio (SINR) -10 log/sub 10/ r [dB] (r/spl les/1) below an optimum value. Next, we present the weight convergence of CDMA adaptive array antennas based on the SMI algorithm, where two types of weight computational methods are compared between "chip-level computation" and "symbol-level computation". Analytical and simulation results reveal that "chip-level computation" before the despreading process enables faster convergence than "symbol-level computation" after the despreading process.