承载可吸收磷酸钙水泥的研制

Johanna Unosson, H. Engqvist
{"title":"承载可吸收磷酸钙水泥的研制","authors":"Johanna Unosson, H. Engqvist","doi":"10.4172/2090-5025.1000074","DOIUrl":null,"url":null,"abstract":"Compared to cortical bone and polymeric bone cements, the mechanical properties of calcium phosphate cements are generally poor. This has resulted in them being used in non-load bearing clinical applications. The aim of this study was to investigate the possibility of producing a brushite cement with mechanical properties closer to those of cortical bone (i.e., >100 MPa in compression), i.e. with a potential to be used in load bearing applications. With a compressive strength of 74.4 (± 10.7) MPa, maximum at 91.8 MPa, the cement presented herein is comparable with the non degradable polymeric counterparts and the strongest hydroxyapatite cements, and is close in strength of cortical bone. Furthermore, it has a high injectability (>90%) and a setting time of approximately 17 minutes. A cement comprising these properties has great potential of changing the future clinical indications for calcium phosphate cements, and could potentially reduce the use of non-degradable polymeric cements.","PeriodicalId":127691,"journal":{"name":"Bioceramics Development and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Development of a Resorbable Calcium Phosphate Cement with Load Bearing Capacity\",\"authors\":\"Johanna Unosson, H. Engqvist\",\"doi\":\"10.4172/2090-5025.1000074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared to cortical bone and polymeric bone cements, the mechanical properties of calcium phosphate cements are generally poor. This has resulted in them being used in non-load bearing clinical applications. The aim of this study was to investigate the possibility of producing a brushite cement with mechanical properties closer to those of cortical bone (i.e., >100 MPa in compression), i.e. with a potential to be used in load bearing applications. With a compressive strength of 74.4 (± 10.7) MPa, maximum at 91.8 MPa, the cement presented herein is comparable with the non degradable polymeric counterparts and the strongest hydroxyapatite cements, and is close in strength of cortical bone. Furthermore, it has a high injectability (>90%) and a setting time of approximately 17 minutes. A cement comprising these properties has great potential of changing the future clinical indications for calcium phosphate cements, and could potentially reduce the use of non-degradable polymeric cements.\",\"PeriodicalId\":127691,\"journal\":{\"name\":\"Bioceramics Development and Applications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioceramics Development and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2090-5025.1000074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioceramics Development and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2090-5025.1000074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

与皮质骨水泥和聚合骨水泥相比,磷酸钙骨水泥的力学性能一般较差。这导致它们被用于非承重临床应用。本研究的目的是研究生产一种机械性能更接近皮质骨的刷石水泥的可能性(即压力为100 MPa),即具有用于承载应用的潜力。该水泥的抗压强度为74.4(±10.7)MPa,最大抗压强度为91.8 MPa,与不可降解聚合物水泥和最强的羟基磷灰石水泥相当,与皮质骨的强度相近。此外,它具有高注射性(>90%)和约17分钟的凝固时间。含有这些特性的水泥具有改变未来磷酸钙水泥的临床适应症的巨大潜力,并且有可能减少不可降解聚合物水泥的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a Resorbable Calcium Phosphate Cement with Load Bearing Capacity
Compared to cortical bone and polymeric bone cements, the mechanical properties of calcium phosphate cements are generally poor. This has resulted in them being used in non-load bearing clinical applications. The aim of this study was to investigate the possibility of producing a brushite cement with mechanical properties closer to those of cortical bone (i.e., >100 MPa in compression), i.e. with a potential to be used in load bearing applications. With a compressive strength of 74.4 (± 10.7) MPa, maximum at 91.8 MPa, the cement presented herein is comparable with the non degradable polymeric counterparts and the strongest hydroxyapatite cements, and is close in strength of cortical bone. Furthermore, it has a high injectability (>90%) and a setting time of approximately 17 minutes. A cement comprising these properties has great potential of changing the future clinical indications for calcium phosphate cements, and could potentially reduce the use of non-degradable polymeric cements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modal Analysis of FGM Plates (Sus304/Al2O3) Using FEM Intentional Replantation with 180° Rotation of a Crown-Root Fracture as a Last Expedient: A Case Report Mechanism of Bonding in Seashell Powder Based Ceramic Composites Used for Binder-Jet 3D Printing Effect of βTricalcium Phosphate Nanoparticles Additions on the Properties of Gelatin-Chitosan Scaffolds Hydroxyapatite Scaffolds for Bone Tissue Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1