视频序列的模糊情感识别模型

M. Oussalah, S. Wang
{"title":"视频序列的模糊情感识别模型","authors":"M. Oussalah, S. Wang","doi":"10.1109/IPTA.2012.6469574","DOIUrl":null,"url":null,"abstract":"Automatic facial expression recognition from video clips is a challenging task due to computational complexity, limitations of image analysis and subjectivity. This paper advocates a fuzzy based approach for emotion classification. On the other hand, several proposals have been put forward to enhance the pre-processing stage prior to the classification. This includes a combination of a boundary elliptical model for skin detection, adaptive thresholding, principal component analysis and use of cam-shift for face tracking. The performances of the developed system have been evaluated using TFEID and video clips and compared with Bayes' classifier.","PeriodicalId":267290,"journal":{"name":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fuzzy emotion recognition model for video sequences\",\"authors\":\"M. Oussalah, S. Wang\",\"doi\":\"10.1109/IPTA.2012.6469574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic facial expression recognition from video clips is a challenging task due to computational complexity, limitations of image analysis and subjectivity. This paper advocates a fuzzy based approach for emotion classification. On the other hand, several proposals have been put forward to enhance the pre-processing stage prior to the classification. This includes a combination of a boundary elliptical model for skin detection, adaptive thresholding, principal component analysis and use of cam-shift for face tracking. The performances of the developed system have been evaluated using TFEID and video clips and compared with Bayes' classifier.\",\"PeriodicalId\":267290,\"journal\":{\"name\":\"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2012.6469574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2012.6469574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于计算复杂性、图像分析的局限性和主观性,从视频片段中自动识别面部表情是一项具有挑战性的任务。本文提出了一种基于模糊的情感分类方法。另一方面,提出了几项建议,以加强分类前的预处理阶段。这包括用于皮肤检测的边界椭圆模型、自适应阈值、主成分分析和用于人脸跟踪的凸轮移位的组合。利用TFEID和视频片段对系统的性能进行了评价,并与贝叶斯分类器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy emotion recognition model for video sequences
Automatic facial expression recognition from video clips is a challenging task due to computational complexity, limitations of image analysis and subjectivity. This paper advocates a fuzzy based approach for emotion classification. On the other hand, several proposals have been put forward to enhance the pre-processing stage prior to the classification. This includes a combination of a boundary elliptical model for skin detection, adaptive thresholding, principal component analysis and use of cam-shift for face tracking. The performances of the developed system have been evaluated using TFEID and video clips and compared with Bayes' classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Case study: Deployment of the 2D NoC on 3D for the generation of large emulation platforms A combining approach for 2D face recognition application on IV2 database Spherical coordinates framed RGB color space dichromatic reflection model based image segmentation: Application to wildland fires' outlines extraction Image processing and vision for the study and the modeling of spreading fires Real time watermarking to authenticate the WSQ bitstream
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1