基于优化双向长短期记忆网络的有效视频事件检测

Susmitha Alamuru, Sanjay Jain
{"title":"基于优化双向长短期记忆网络的有效视频事件检测","authors":"Susmitha Alamuru, Sanjay Jain","doi":"10.1142/s0219622023500621","DOIUrl":null,"url":null,"abstract":"In recent times, video event detection gained high attention in the researcher’s community, because of its widespread applications. In this paper, a new model is proposed for detecting different human actions in the video sequences. First, the videos are acquired from the University of Central Florida (UCF) 101, Human Motion Database (HMDB) 51 and Columbia Consumer Video (CCV) datasets. In addition, the DenseNet201 model is implemented for extracting deep feature values from the acquired datasets. Further, the Improved Gray Wolf Optimization (IGWO) algorithm is developed for selecting active/relevant feature values that effectively improve the computational time and system complexity. In the IGWO, leader enhancement and competitive strategies are employed to improve the convergence rate and to prevent the algorithm from falling into the local optima. Finally, the Bi-directional Long Short Term Memory (BiLSTM) network is used for event classification (101 action types in UCF101, 51 action types in HMDB51, and 20 action types in CCV). In the resulting phase, the IGWO-based BiLSTM network achieved 94.73%, 96.53%, and 93.91% accuracy on the UCF101, HMDB51, and CCV datasets.","PeriodicalId":257183,"journal":{"name":"International Journal of Information Technology & Decision Making","volume":"240 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Video Event Detection Using Optimized Bidirectional Long Short-Term Memory Network\",\"authors\":\"Susmitha Alamuru, Sanjay Jain\",\"doi\":\"10.1142/s0219622023500621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent times, video event detection gained high attention in the researcher’s community, because of its widespread applications. In this paper, a new model is proposed for detecting different human actions in the video sequences. First, the videos are acquired from the University of Central Florida (UCF) 101, Human Motion Database (HMDB) 51 and Columbia Consumer Video (CCV) datasets. In addition, the DenseNet201 model is implemented for extracting deep feature values from the acquired datasets. Further, the Improved Gray Wolf Optimization (IGWO) algorithm is developed for selecting active/relevant feature values that effectively improve the computational time and system complexity. In the IGWO, leader enhancement and competitive strategies are employed to improve the convergence rate and to prevent the algorithm from falling into the local optima. Finally, the Bi-directional Long Short Term Memory (BiLSTM) network is used for event classification (101 action types in UCF101, 51 action types in HMDB51, and 20 action types in CCV). In the resulting phase, the IGWO-based BiLSTM network achieved 94.73%, 96.53%, and 93.91% accuracy on the UCF101, HMDB51, and CCV datasets.\",\"PeriodicalId\":257183,\"journal\":{\"name\":\"International Journal of Information Technology & Decision Making\",\"volume\":\"240 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology & Decision Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219622023500621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology & Decision Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219622023500621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,视频事件检测因其广泛的应用受到了研究人员的高度关注。本文提出了一种检测视频序列中不同人类动作的新模型。首先,视频是从中佛罗里达大学(UCF) 101、人体运动数据库(HMDB) 51和哥伦比亚消费者视频(CCV)数据集获取的。此外,实现了DenseNet201模型,用于从采集的数据集中提取深度特征值。进一步,提出了改进的灰狼优化算法(IGWO),用于选择活动/相关特征值,有效地提高了计算时间和系统复杂度。在IGWO中,采用leader增强和竞争策略来提高收敛速度,防止算法陷入局部最优。最后,使用双向长短期记忆(BiLSTM)网络进行事件分类(UCF101中有101种动作类型,HMDB51中有51种动作类型,CCV中有20种动作类型)。在最终阶段,基于igwo的BiLSTM网络在UCF101、HMDB51和CCV数据集上的准确率分别达到了94.73%、96.53%和93.91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective Video Event Detection Using Optimized Bidirectional Long Short-Term Memory Network
In recent times, video event detection gained high attention in the researcher’s community, because of its widespread applications. In this paper, a new model is proposed for detecting different human actions in the video sequences. First, the videos are acquired from the University of Central Florida (UCF) 101, Human Motion Database (HMDB) 51 and Columbia Consumer Video (CCV) datasets. In addition, the DenseNet201 model is implemented for extracting deep feature values from the acquired datasets. Further, the Improved Gray Wolf Optimization (IGWO) algorithm is developed for selecting active/relevant feature values that effectively improve the computational time and system complexity. In the IGWO, leader enhancement and competitive strategies are employed to improve the convergence rate and to prevent the algorithm from falling into the local optima. Finally, the Bi-directional Long Short Term Memory (BiLSTM) network is used for event classification (101 action types in UCF101, 51 action types in HMDB51, and 20 action types in CCV). In the resulting phase, the IGWO-based BiLSTM network achieved 94.73%, 96.53%, and 93.91% accuracy on the UCF101, HMDB51, and CCV datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect Analysis of COVID-19 on China's Capital Market for Property-Rights Exchange Based on Functional Clustering Operational risk measurement: An optimal timescale selection method based on information entropy Modeling photovoltaic facilities via fuzzy sets and linguistic Petri nets Performance assessment of business process optimisation algorithms using a prototype dataset generator Ecological, Social and Governance Impact on the Company's Performance: Information Technology Sector Insight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1