摘要:在安全关键型嵌入式系统中调度动态软件更新——以无人机为例

Ahmed El Yaacoub, L. Mottola, T. Voigt, Philipp Rümmer
{"title":"摘要:在安全关键型嵌入式系统中调度动态软件更新——以无人机为例","authors":"Ahmed El Yaacoub, L. Mottola, T. Voigt, Philipp Rümmer","doi":"10.1109/iccps54341.2022.00033","DOIUrl":null,"url":null,"abstract":"Dynamic software updates enable software evolution and bug fixes to embedded systems without disrupting their run-time operation. Scheduling dynamic updates for safety-critical embedded systems, such as aerial drones, must be done with great care. Otherwise, the system's control loop will be delayed leading to a partial or even complete loss of control, ultimately impacting the dependable operation. We propose an update scheduling algorithm called NeRTA, which schedules updates during the short times when the processor would have been idle. NeRTA consequently avoids the loss of control that would occur if an update delayed the execution of the control loop. The algorithm computes conservative estimations of idle times to determine if an update is possible, but is also sufficiently accurate that the estimated idle time is typically within 15% of the actual idle time.","PeriodicalId":340078,"journal":{"name":"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poster Abstract: Scheduling Dynamic Software Updates in Safety-critical Embedded Systems - the Case of Aerial Drones\",\"authors\":\"Ahmed El Yaacoub, L. Mottola, T. Voigt, Philipp Rümmer\",\"doi\":\"10.1109/iccps54341.2022.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic software updates enable software evolution and bug fixes to embedded systems without disrupting their run-time operation. Scheduling dynamic updates for safety-critical embedded systems, such as aerial drones, must be done with great care. Otherwise, the system's control loop will be delayed leading to a partial or even complete loss of control, ultimately impacting the dependable operation. We propose an update scheduling algorithm called NeRTA, which schedules updates during the short times when the processor would have been idle. NeRTA consequently avoids the loss of control that would occur if an update delayed the execution of the control loop. The algorithm computes conservative estimations of idle times to determine if an update is possible, but is also sufficiently accurate that the estimated idle time is typically within 15% of the actual idle time.\",\"PeriodicalId\":340078,\"journal\":{\"name\":\"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccps54341.2022.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccps54341.2022.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态软件更新使嵌入式系统能够在不中断其运行时操作的情况下进行软件进化和错误修复。为安全关键型嵌入式系统(如空中无人机)安排动态更新必须非常小心。否则,系统的控制回路将被延迟,导致部分甚至完全失去控制,最终影响系统的可靠运行。我们提出了一个名为NeRTA的更新调度算法,它在处理器空闲的短时间内调度更新。因此,NeRTA避免了由于更新延迟了控制循环的执行而导致的控制丢失。该算法计算空闲时间的保守估计,以确定是否可能进行更新,但也足够准确,估计的空闲时间通常在实际空闲时间的15%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Poster Abstract: Scheduling Dynamic Software Updates in Safety-critical Embedded Systems - the Case of Aerial Drones
Dynamic software updates enable software evolution and bug fixes to embedded systems without disrupting their run-time operation. Scheduling dynamic updates for safety-critical embedded systems, such as aerial drones, must be done with great care. Otherwise, the system's control loop will be delayed leading to a partial or even complete loss of control, ultimately impacting the dependable operation. We propose an update scheduling algorithm called NeRTA, which schedules updates during the short times when the processor would have been idle. NeRTA consequently avoids the loss of control that would occur if an update delayed the execution of the control loop. The algorithm computes conservative estimations of idle times to determine if an update is possible, but is also sufficiently accurate that the estimated idle time is typically within 15% of the actual idle time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poster Abstract: Scheduling Dynamic Software Updates in Safety-critical Embedded Systems - the Case of Aerial Drones Multi-fidelity Bayesian Optimization for Co-design of Resilient Cyber-Physical Systems Decentralized Multi-agent Coordination under MITL Tasks and Communication Constraints Safety from Fast, In-the-Loop Reachability with Application to UAVs Blind Spots of Objective Measures: Exploiting Imperceivable Errors for Immersive Tactile Internet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1