基于改进量子粒子群优化算法的k均值聚类

Lili Bai, Zerui Song, Haijie Bao, Jing-qing Jiang
{"title":"基于改进量子粒子群优化算法的k均值聚类","authors":"Lili Bai, Zerui Song, Haijie Bao, Jing-qing Jiang","doi":"10.1109/ICACI52617.2021.9435862","DOIUrl":null,"url":null,"abstract":"In clustering, in order to find a better data clustering center, make the algorithm convergence faster and clustering results more accurate, a k-means clustering algorithm based on improved quantum particle swarm optimization algorithm is proposed. In this algorithm, the cluster center is simulated as a particle. Cloning and mutation operations are used to increase the diversity and improve the global search ability of QPSO. A suitable and stable cluster center is obtained. Finally, an effective clustering result is obtained. The algorithm is tested with UCI data set. The results show that the improved algorithm not only ensures the global convergence of the algorithm, but also obtains more accurate clustering results.","PeriodicalId":382483,"journal":{"name":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"K-means Clustering Based on Improved Quantum Particle Swarm Optimization Algorithm\",\"authors\":\"Lili Bai, Zerui Song, Haijie Bao, Jing-qing Jiang\",\"doi\":\"10.1109/ICACI52617.2021.9435862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In clustering, in order to find a better data clustering center, make the algorithm convergence faster and clustering results more accurate, a k-means clustering algorithm based on improved quantum particle swarm optimization algorithm is proposed. In this algorithm, the cluster center is simulated as a particle. Cloning and mutation operations are used to increase the diversity and improve the global search ability of QPSO. A suitable and stable cluster center is obtained. Finally, an effective clustering result is obtained. The algorithm is tested with UCI data set. The results show that the improved algorithm not only ensures the global convergence of the algorithm, but also obtains more accurate clustering results.\",\"PeriodicalId\":382483,\"journal\":{\"name\":\"2021 13th International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI52617.2021.9435862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI52617.2021.9435862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在聚类中,为了找到更好的数据聚类中心,使算法收敛更快,聚类结果更准确,提出了一种基于改进量子粒子群优化算法的k-means聚类算法。该算法将聚类中心模拟为一个粒子。克隆和突变操作增加了QPSO的多样性,提高了QPSO的全局搜索能力。得到了一个合适且稳定的簇中心。最后,得到了有效的聚类结果。在UCI数据集上对该算法进行了测试。结果表明,改进算法不仅保证了算法的全局收敛性,而且得到了更准确的聚类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
K-means Clustering Based on Improved Quantum Particle Swarm Optimization Algorithm
In clustering, in order to find a better data clustering center, make the algorithm convergence faster and clustering results more accurate, a k-means clustering algorithm based on improved quantum particle swarm optimization algorithm is proposed. In this algorithm, the cluster center is simulated as a particle. Cloning and mutation operations are used to increase the diversity and improve the global search ability of QPSO. A suitable and stable cluster center is obtained. Finally, an effective clustering result is obtained. The algorithm is tested with UCI data set. The results show that the improved algorithm not only ensures the global convergence of the algorithm, but also obtains more accurate clustering results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual saliency detection based on visual center shift MMTrans-MT: A Framework for Multimodal Emotion Recognition Using Multitask Learning K-means Clustering Based on Improved Quantum Particle Swarm Optimization Algorithm Performance of different Electric vehicle Battery packs at low temperature and Analysis of Intelligent SOC experiment Service Quality Loss-aware Privacy Protection Mechanism in Edge-Cloud IoTs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1