小提琴琴弓技术分类的机器学习方法:IMU和MOCAP系统的比较

D. Dalmazzo, S. Tassani, R. Ramírez
{"title":"小提琴琴弓技术分类的机器学习方法:IMU和MOCAP系统的比较","authors":"D. Dalmazzo, S. Tassani, R. Ramírez","doi":"10.1145/3266157.3266216","DOIUrl":null,"url":null,"abstract":"Motion Capture (MOCAP) Systems have been used to analyze body motion and postures in biomedicine, sports, rehabilitation, and music. With the aim to compare the precision of low-cost devices for motion tracking (e.g. Myo) with the precision of MOCAP systems in the context of music performance, we recorded MOCAP and Myo data of a top professional violinist executing four fundamental bowing techniques (i.e. Détaché, Martelé, Spiccato and Ricochet). Using the recorded data we applied machine learning techniques to train models to classify the four bowing techniques. Despite intrinsic differences between the MOCAP and low-cost data, the Myo-based classifier resulted in slightly higher accuracy than the MOCAP-based classifier. This result shows that it is possible to develop music-gesture learning applications based on low-cost technology which can be used in home environments for self-learning practitioners.","PeriodicalId":151070,"journal":{"name":"Proceedings of the 5th International Workshop on Sensor-based Activity Recognition and Interaction","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Machine Learning Approach to Violin Bow Technique Classification: a Comparison Between IMU and MOCAP systems\",\"authors\":\"D. Dalmazzo, S. Tassani, R. Ramírez\",\"doi\":\"10.1145/3266157.3266216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motion Capture (MOCAP) Systems have been used to analyze body motion and postures in biomedicine, sports, rehabilitation, and music. With the aim to compare the precision of low-cost devices for motion tracking (e.g. Myo) with the precision of MOCAP systems in the context of music performance, we recorded MOCAP and Myo data of a top professional violinist executing four fundamental bowing techniques (i.e. Détaché, Martelé, Spiccato and Ricochet). Using the recorded data we applied machine learning techniques to train models to classify the four bowing techniques. Despite intrinsic differences between the MOCAP and low-cost data, the Myo-based classifier resulted in slightly higher accuracy than the MOCAP-based classifier. This result shows that it is possible to develop music-gesture learning applications based on low-cost technology which can be used in home environments for self-learning practitioners.\",\"PeriodicalId\":151070,\"journal\":{\"name\":\"Proceedings of the 5th International Workshop on Sensor-based Activity Recognition and Interaction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Workshop on Sensor-based Activity Recognition and Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3266157.3266216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on Sensor-based Activity Recognition and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3266157.3266216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

动作捕捉(MOCAP)系统已被用于分析生物医学、运动、康复和音乐领域的身体运动和姿势。为了比较低成本的运动跟踪设备(例如Myo)与MOCAP系统在音乐表演中的精度,我们记录了一位顶级专业小提琴家执行四种基本弓弦技术(即dsamactach、martel、Spiccato和Ricochet)的MOCAP和Myo数据。使用记录的数据,我们应用机器学习技术来训练模型来分类四种弯曲技术。尽管MOCAP和低成本数据之间存在内在差异,但基于myo的分类器的准确率略高于基于MOCAP的分类器。这一结果表明,基于低成本技术开发音乐手势学习应用程序是可能的,可以在家庭环境中用于自学从业者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Machine Learning Approach to Violin Bow Technique Classification: a Comparison Between IMU and MOCAP systems
Motion Capture (MOCAP) Systems have been used to analyze body motion and postures in biomedicine, sports, rehabilitation, and music. With the aim to compare the precision of low-cost devices for motion tracking (e.g. Myo) with the precision of MOCAP systems in the context of music performance, we recorded MOCAP and Myo data of a top professional violinist executing four fundamental bowing techniques (i.e. Détaché, Martelé, Spiccato and Ricochet). Using the recorded data we applied machine learning techniques to train models to classify the four bowing techniques. Despite intrinsic differences between the MOCAP and low-cost data, the Myo-based classifier resulted in slightly higher accuracy than the MOCAP-based classifier. This result shows that it is possible to develop music-gesture learning applications based on low-cost technology which can be used in home environments for self-learning practitioners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Activity Recognition using Head Worn Inertial Sensors A Machine Learning Approach to Violin Bow Technique Classification: a Comparison Between IMU and MOCAP systems Using Wrist-Worn Activity Recognition for Basketball Game Analysis Towards a task-driven framework for multimodal fatigue analysis during physical and cognitive tasks Exploring Accelerometer-based Step Detection by using a Wheeled Walking Frame
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1