面向人工翻译指导的ASR系统语言发现

Sebastian Stüker, A. Waibel
{"title":"面向人工翻译指导的ASR系统语言发现","authors":"Sebastian Stüker, A. Waibel","doi":"10.21437/Interspeech.2009-765","DOIUrl":null,"url":null,"abstract":"ABSTRACTNatural language processing systems, e.g for AutomaticSpeech Recognition (ASR) or Machine Translation (MT),havebeenstudiedonlyforafractionoftheapprox.7000lan-guagesthatexistintoday’sworld,themajorityofwhichhaveonlycomparativelyfewspeakersandfewresources.Thetra-ditionalapproachofcollectingandannotatingthenecessarytrainingdataisduetoeconomicconstraintsnotfeasibleformostofthem. AtthesametimeitisofvitalinteresttohaveNLPsystemsaddresspracticallyalllanguagesintheworld.New,efficientwaysofgatheringtheneededtrainingmaterialhavetobefound.InthispaperweproposeanewtechniqueofcollectingsuchdatabyexploitingtheknowledgegainedfromHumansimultaneoustranslationsthathappenfrequentlyintherealworld. Toshowthefeasibilityofourapproachwepresentfirstexperimentstowardsconstructingapronuncia-tiondictionaryfromthedatagained.Index Terms — Automatic Speech Recognition, Lan-guage Discovery, Machine Translation, Under-ResourcedLanguages1. INTRODUCTION1.1. The Traditional Way to Acquire Training DataTraining large vocabulary continuous speech recognition(LVCSR) systems requires a number resources in the tar-getedlanguage. Fortrainingtheacousticmodelofarecog-nitionsystemlargeamountsoftranscribedaudiorecordingsofspeechareneeded.Thetrainingofthelanguagemodelre-quireslargeamountsofwrittentextinthetargetedlanguage.Whenusingphonemebasedacousticmodels,apronunciationdictionaryisneededthatmapsthewrittenrepresentationofawordtothesequenceofitsphonemeswhenbeingspoken.Approximately7,000languagesexisttoday,thecurrenteditionofEthnologue[1]lists7,299.Sofar,automaticspeechrecognition (ASR) systems and machine translation (MT)","PeriodicalId":190269,"journal":{"name":"Workshop on Spoken Language Technologies for Under-resourced Languages","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Towards human translations guided language discovery for ASR systems\",\"authors\":\"Sebastian Stüker, A. Waibel\",\"doi\":\"10.21437/Interspeech.2009-765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTNatural language processing systems, e.g for AutomaticSpeech Recognition (ASR) or Machine Translation (MT),havebeenstudiedonlyforafractionoftheapprox.7000lan-guagesthatexistintoday’sworld,themajorityofwhichhaveonlycomparativelyfewspeakersandfewresources.Thetra-ditionalapproachofcollectingandannotatingthenecessarytrainingdataisduetoeconomicconstraintsnotfeasibleformostofthem. AtthesametimeitisofvitalinteresttohaveNLPsystemsaddresspracticallyalllanguagesintheworld.New,efficientwaysofgatheringtheneededtrainingmaterialhavetobefound.InthispaperweproposeanewtechniqueofcollectingsuchdatabyexploitingtheknowledgegainedfromHumansimultaneoustranslationsthathappenfrequentlyintherealworld. Toshowthefeasibilityofourapproachwepresentfirstexperimentstowardsconstructingapronuncia-tiondictionaryfromthedatagained.Index Terms — Automatic Speech Recognition, Lan-guage Discovery, Machine Translation, Under-ResourcedLanguages1. INTRODUCTION1.1. The Traditional Way to Acquire Training DataTraining large vocabulary continuous speech recognition(LVCSR) systems requires a number resources in the tar-getedlanguage. Fortrainingtheacousticmodelofarecog-nitionsystemlargeamountsoftranscribedaudiorecordingsofspeechareneeded.Thetrainingofthelanguagemodelre-quireslargeamountsofwrittentextinthetargetedlanguage.Whenusingphonemebasedacousticmodels,apronunciationdictionaryisneededthatmapsthewrittenrepresentationofawordtothesequenceofitsphonemeswhenbeingspoken.Approximately7,000languagesexisttoday,thecurrenteditionofEthnologue[1]lists7,299.Sofar,automaticspeechrecognition (ASR) systems and machine translation (MT)\",\"PeriodicalId\":190269,\"journal\":{\"name\":\"Workshop on Spoken Language Technologies for Under-resourced Languages\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Spoken Language Technologies for Under-resourced Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/Interspeech.2009-765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Spoken Language Technologies for Under-resourced Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/Interspeech.2009-765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

摘要自然语言处理系统,如自动语音识别(ASR)或机器翻译(MT),只针对当今世界上存在的大约7000种语言中的一小部分进行了研究,其中大多数语言只有相对较少的演讲者和较少的资源,传统的收集和注释必要的训练数据的方法由于经济限制对大多数语言来说是不可行的。AtthesametimeitisofvitalinteresttohaveNLPsystemsaddresspracticallyalllanguagesintheworld.New efficientwaysofgatheringtheneededtrainingmaterialhavetobefound.InthispaperweproposeanewtechniqueofcollectingsuchdatabyexploitingtheknowledgegainedfromHumansimultaneoustranslationsthathappenfrequentlyintherealworld。Toshowthefeasibilityofourapproachwepresentfirstexperimentstowardsconstructingapronuncia-tiondictionaryfromthedatagained。索引术语-自动语音识别,语言发现,机器翻译,资源不足语言。INTRODUCTION1.1。训练数据的传统获取方法训练大词汇量连续语音识别(LVCSR)系统需要大量的目标语言资源。Fortrainingtheacousticmodelofarecog-nitionsystemlargeamountsoftranscribedaudiorecordingsofspeechareneeded.Thetrainingofthelanguagemodelre-quireslargeamountsofwrittentextinthetargetedlanguage.Whenusingphonemebasedacousticmodels、apronunciationdictionaryisneededthatmapsthewrittenrepresentationofawordtothesequenceofitsphonemeswhenbeingspoken.Approximately7,000languagesexisttoday thecurrenteditionofEthnologue [1] lists7,299。迄今为止,自动语音识别(ASR)系统和机器翻译(MT)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards human translations guided language discovery for ASR systems
ABSTRACTNatural language processing systems, e.g for AutomaticSpeech Recognition (ASR) or Machine Translation (MT),havebeenstudiedonlyforafractionoftheapprox.7000lan-guagesthatexistintoday’sworld,themajorityofwhichhaveonlycomparativelyfewspeakersandfewresources.Thetra-ditionalapproachofcollectingandannotatingthenecessarytrainingdataisduetoeconomicconstraintsnotfeasibleformostofthem. AtthesametimeitisofvitalinteresttohaveNLPsystemsaddresspracticallyalllanguagesintheworld.New,efficientwaysofgatheringtheneededtrainingmaterialhavetobefound.InthispaperweproposeanewtechniqueofcollectingsuchdatabyexploitingtheknowledgegainedfromHumansimultaneoustranslationsthathappenfrequentlyintherealworld. Toshowthefeasibilityofourapproachwepresentfirstexperimentstowardsconstructingapronuncia-tiondictionaryfromthedatagained.Index Terms — Automatic Speech Recognition, Lan-guage Discovery, Machine Translation, Under-ResourcedLanguages1. INTRODUCTION1.1. The Traditional Way to Acquire Training DataTraining large vocabulary continuous speech recognition(LVCSR) systems requires a number resources in the tar-getedlanguage. Fortrainingtheacousticmodelofarecog-nitionsystemlargeamountsoftranscribedaudiorecordingsofspeechareneeded.Thetrainingofthelanguagemodelre-quireslargeamountsofwrittentextinthetargetedlanguage.Whenusingphonemebasedacousticmodels,apronunciationdictionaryisneededthatmapsthewrittenrepresentationofawordtothesequenceofitsphonemeswhenbeingspoken.Approximately7,000languagesexisttoday,thecurrenteditionofEthnologue[1]lists7,299.Sofar,automaticspeechrecognition (ASR) systems and machine translation (MT)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Corpus of the Sorani Kurdish Folkloric Lyrics A Sentiment Analysis Dataset for Code-Mixed Malayalam-English Corpus Creation for Sentiment Analysis in Code-Mixed Tamil-English Text Text Normalization for Bangla, Khmer, Nepali, Javanese, Sinhala and Sundanese Text-to-Speech Systems Crowd-Sourced Speech Corpora for Javanese, Sundanese, Sinhala, Nepali, and Bangladeshi Bengali
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1