基于数据驱动稳定裕度的智能故障分类方法

Xuejiao Wang, Hao Luo, Kuan Li, Shen Yin, O. Kaynak
{"title":"基于数据驱动稳定裕度的智能故障分类方法","authors":"Xuejiao Wang, Hao Luo, Kuan Li, Shen Yin, O. Kaynak","doi":"10.1109/IAI50351.2020.9262218","DOIUrl":null,"url":null,"abstract":"Thanks to rapid development of artificial intelligence (AI), a new branch of computer science, modern industry system becomes increasingly intelligent. What's more, mountains of data in industrial process can be saved for data-driven intelligent fault detection and classification. A method of intelligent data-driven fault classification based on stability margin is proposed in this paper, which gives a data-driven stability margin solution. As an important feature, the stability margin, together with the input and output (I/O) data, is input into the LM-BP neural network multi-classifier for fault classification. Moreover, the proposed method is demonstrated to be effective with high accuracy through a DC motor benchmark.","PeriodicalId":137183,"journal":{"name":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Intelligent Fault Classification Method Based on Data-Driven Stability Margin\",\"authors\":\"Xuejiao Wang, Hao Luo, Kuan Li, Shen Yin, O. Kaynak\",\"doi\":\"10.1109/IAI50351.2020.9262218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thanks to rapid development of artificial intelligence (AI), a new branch of computer science, modern industry system becomes increasingly intelligent. What's more, mountains of data in industrial process can be saved for data-driven intelligent fault detection and classification. A method of intelligent data-driven fault classification based on stability margin is proposed in this paper, which gives a data-driven stability margin solution. As an important feature, the stability margin, together with the input and output (I/O) data, is input into the LM-BP neural network multi-classifier for fault classification. Moreover, the proposed method is demonstrated to be effective with high accuracy through a DC motor benchmark.\",\"PeriodicalId\":137183,\"journal\":{\"name\":\"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI50351.2020.9262218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI50351.2020.9262218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能是计算机科学的一个新分支,随着人工智能的迅速发展,现代工业系统日益智能化。此外,还可以将工业过程中的大量数据存储起来,用于数据驱动的智能故障检测和分类。提出了一种基于稳定裕度的数据驱动故障智能分类方法,给出了一种数据驱动的稳定裕度解。作为一项重要特征,稳定裕度与输入输出(I/O)数据一起输入到LM-BP神经网络多分类器中进行故障分类。通过直流电机测试,验证了该方法的有效性和高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Intelligent Fault Classification Method Based on Data-Driven Stability Margin
Thanks to rapid development of artificial intelligence (AI), a new branch of computer science, modern industry system becomes increasingly intelligent. What's more, mountains of data in industrial process can be saved for data-driven intelligent fault detection and classification. A method of intelligent data-driven fault classification based on stability margin is proposed in this paper, which gives a data-driven stability margin solution. As an important feature, the stability margin, together with the input and output (I/O) data, is input into the LM-BP neural network multi-classifier for fault classification. Moreover, the proposed method is demonstrated to be effective with high accuracy through a DC motor benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phasmatodea population evolution algorithm and its application in length-changeable incremental extreme learning machine An Intelligent Fault Classification Method Based on Data-Driven Stability Margin Real-time Wind Estimation with a Quadrotor using BP Neural Network Hybrid Neural Network Based on GRU with Uncertain Factors for Forecasting Ultra-short-term Wind Power Research on the mechanism and network model of China's public cultural service in the Internet Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1