正则多进分解的非线性最小二乘算法

Martijn Boussé, L. D. Lathauwer
{"title":"正则多进分解的非线性最小二乘算法","authors":"Martijn Boussé, L. D. Lathauwer","doi":"10.1109/CAMSAP.2017.8313141","DOIUrl":null,"url":null,"abstract":"The canonical polyadic decomposition (CPD) is an important tensor tool in signal processing with various applications in blind source separation and sensor array processing. Many algorithms have been developed for the computation of a CPD using a least squares cost function. Standard least-squares methods assumes that the residuals are uncorrelated and have equal variances which is often not true in practice, rendering the approach suboptimal. Weighted least squares allows one to explicitly accommodate for general (co)variances in the cost function. In this paper, we develop a new nonlinear least-squares algorithm for the computation of a CPD using low-rank weights which enables efficient weighting of the residuals. We briefly illustrate our algorithm for direction-of-arrival estimation using an array of sensors with varying quality.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Nonlinear least squares algorithm for canonical polyadic decomposition using low-rank weights\",\"authors\":\"Martijn Boussé, L. D. Lathauwer\",\"doi\":\"10.1109/CAMSAP.2017.8313141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The canonical polyadic decomposition (CPD) is an important tensor tool in signal processing with various applications in blind source separation and sensor array processing. Many algorithms have been developed for the computation of a CPD using a least squares cost function. Standard least-squares methods assumes that the residuals are uncorrelated and have equal variances which is often not true in practice, rendering the approach suboptimal. Weighted least squares allows one to explicitly accommodate for general (co)variances in the cost function. In this paper, we develop a new nonlinear least-squares algorithm for the computation of a CPD using low-rank weights which enables efficient weighting of the residuals. We briefly illustrate our algorithm for direction-of-arrival estimation using an array of sensors with varying quality.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"235 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

正则多进分解(CPD)是信号处理中重要的张量工具,在盲源分离和传感器阵列处理中有着广泛的应用。使用最小二乘代价函数计算CPD的算法有很多。标准最小二乘法假设残差是不相关的,并且具有相等的方差,这在实践中往往是不正确的,使得该方法不是最优的。加权最小二乘允许人们显式地适应成本函数中的一般(co)方差。在本文中,我们开发了一种新的非线性最小二乘算法来计算CPD,该算法使用低秩权值,可以有效地对残差进行加权。我们简要地说明了我们的算法的到达方向估计使用阵列的传感器与不同的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear least squares algorithm for canonical polyadic decomposition using low-rank weights
The canonical polyadic decomposition (CPD) is an important tensor tool in signal processing with various applications in blind source separation and sensor array processing. Many algorithms have been developed for the computation of a CPD using a least squares cost function. Standard least-squares methods assumes that the residuals are uncorrelated and have equal variances which is often not true in practice, rendering the approach suboptimal. Weighted least squares allows one to explicitly accommodate for general (co)variances in the cost function. In this paper, we develop a new nonlinear least-squares algorithm for the computation of a CPD using low-rank weights which enables efficient weighting of the residuals. We briefly illustrate our algorithm for direction-of-arrival estimation using an array of sensors with varying quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved DOA estimators using partial relaxation approach Energy efficient transmission in MIMO interference channels with QoS constraints Restricted update sequential matrix diagonalisation for parahermitian matrices Sparse Bayesian learning with dictionary refinement for super-resolution through time L1-PCA signal subspace identification for non-sphered data under the ICA model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1