井间声波测井和频率层析成像分析,以更好地评估异常位置

M. Hajali, C. Abishdid
{"title":"井间声波测井和频率层析成像分析,以更好地评估异常位置","authors":"M. Hajali, C. Abishdid","doi":"10.1179/TBC14Z.0000000001","DOIUrl":null,"url":null,"abstract":"Abstract Cross-hole sonic logging (CSL) has over recent years become the standard method for evaluating the integrity of bridge drilled shafts. The CSL method is based on measuring the speed of ultrasonic waves traveling between probes in parallel tubes placed inside the drilled shaft. Several existing studies have proposed methods that rely on the arrival time and wave speed to evaluate concrete integrity of drilled shaft foundations such as cross-hole tomography. In this study, a processing method for a three-component wide band CSL data is presented. This method named frequency tomography analysis (FTA) is based on the change of the frequency amplitude of the signal recorded by the receiver probe at the location of anomalies. The signal’s time domain data are converted into frequency domain data using fast Fourier transform (FFT); the distribution of the FTA is then evaluated. This method is employed after a CSL test has determined a high probability of an anomaly in a given area and is applied to improve location accuracy and to further characterize the features of the anomaly. Two drilled shaft samples were built in Florida International University (FIU)’s Titan America Structures and Construction Testing (TASCT) Laboratory. Cubic foam pieces were placed inside the rebar cage before casting of concrete and throughout the length of the shaft. FTA was then utilized after the CSL tests to detect their location. The technique proved to have a very high resolution and was able to clarify the location of any artificial or planed discontinuities through the length of the drilled shaft.","PeriodicalId":272645,"journal":{"name":"DFI Journal - The Journal of the Deep Foundations Institute","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cross-hole sonic logging and frequency tomography analysis of drilled shaft foundations to better evaluate anomalies locations\",\"authors\":\"M. Hajali, C. Abishdid\",\"doi\":\"10.1179/TBC14Z.0000000001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cross-hole sonic logging (CSL) has over recent years become the standard method for evaluating the integrity of bridge drilled shafts. The CSL method is based on measuring the speed of ultrasonic waves traveling between probes in parallel tubes placed inside the drilled shaft. Several existing studies have proposed methods that rely on the arrival time and wave speed to evaluate concrete integrity of drilled shaft foundations such as cross-hole tomography. In this study, a processing method for a three-component wide band CSL data is presented. This method named frequency tomography analysis (FTA) is based on the change of the frequency amplitude of the signal recorded by the receiver probe at the location of anomalies. The signal’s time domain data are converted into frequency domain data using fast Fourier transform (FFT); the distribution of the FTA is then evaluated. This method is employed after a CSL test has determined a high probability of an anomaly in a given area and is applied to improve location accuracy and to further characterize the features of the anomaly. Two drilled shaft samples were built in Florida International University (FIU)’s Titan America Structures and Construction Testing (TASCT) Laboratory. Cubic foam pieces were placed inside the rebar cage before casting of concrete and throughout the length of the shaft. FTA was then utilized after the CSL tests to detect their location. The technique proved to have a very high resolution and was able to clarify the location of any artificial or planed discontinuities through the length of the drilled shaft.\",\"PeriodicalId\":272645,\"journal\":{\"name\":\"DFI Journal - The Journal of the Deep Foundations Institute\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DFI Journal - The Journal of the Deep Foundations Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1179/TBC14Z.0000000001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DFI Journal - The Journal of the Deep Foundations Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/TBC14Z.0000000001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,井间声波测井(CSL)已成为评价桥梁井筒完整性的标准方法。CSL方法是基于测量超声波在放置在钻井内的平行管中的探头之间传播的速度。现有的一些研究已经提出了依靠到达时间和波速来评估钻孔竖井基础混凝土完整性的方法,如跨孔层析成像。本文提出了一种三分量宽带CSL数据的处理方法。这种被称为频率层析分析(FTA)的方法是基于接收探头在异常位置记录的信号的频率幅值的变化。利用快速傅里叶变换(FFT)将信号的时域数据转换为频域数据;然后评估自由贸易协定的分布。该方法是在CSL测试确定了给定区域异常的高概率后使用的,用于提高定位精度并进一步表征异常特征。在佛罗里达国际大学(FIU)的泰坦美国结构和建筑测试(TASCT)实验室建造了两个钻孔井样品。在浇筑混凝土之前,在整个竖井内放置了立方泡沫块。然后在CSL测试后使用FTA来检测它们的位置。该技术被证明具有非常高的分辨率,能够通过钻井的长度来确定任何人工或规划的不连续点的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-hole sonic logging and frequency tomography analysis of drilled shaft foundations to better evaluate anomalies locations
Abstract Cross-hole sonic logging (CSL) has over recent years become the standard method for evaluating the integrity of bridge drilled shafts. The CSL method is based on measuring the speed of ultrasonic waves traveling between probes in parallel tubes placed inside the drilled shaft. Several existing studies have proposed methods that rely on the arrival time and wave speed to evaluate concrete integrity of drilled shaft foundations such as cross-hole tomography. In this study, a processing method for a three-component wide band CSL data is presented. This method named frequency tomography analysis (FTA) is based on the change of the frequency amplitude of the signal recorded by the receiver probe at the location of anomalies. The signal’s time domain data are converted into frequency domain data using fast Fourier transform (FFT); the distribution of the FTA is then evaluated. This method is employed after a CSL test has determined a high probability of an anomaly in a given area and is applied to improve location accuracy and to further characterize the features of the anomaly. Two drilled shaft samples were built in Florida International University (FIU)’s Titan America Structures and Construction Testing (TASCT) Laboratory. Cubic foam pieces were placed inside the rebar cage before casting of concrete and throughout the length of the shaft. FTA was then utilized after the CSL tests to detect their location. The technique proved to have a very high resolution and was able to clarify the location of any artificial or planed discontinuities through the length of the drilled shaft.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Note – Issue 3 (2018) Measured end resistance of CFA and drilled displacement piles in San Francisco Area alluvial clay DFI Journal Underwriters A sensitivity analysis on the parameters affecting large diameter helical pile installation torque, depth and installation power for offshore applications The deep soil mixing for the Galataport project in Istanbul, Turkey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1