稀疏标记图的通用低复杂度压缩算法

Payam Delgosha, V. Anantharam
{"title":"稀疏标记图的通用低复杂度压缩算法","authors":"Payam Delgosha, V. Anantharam","doi":"10.1109/ISIT44484.2020.9174300","DOIUrl":null,"url":null,"abstract":"Many modern applications involve accessing and processing graphical data, i.e. data that is naturally indexed by graphs. Examples come from internet graphs, social networks, genomics and proteomics, and other sources. The typically large size of such data motivates seeking efficient ways for its compression and decompression. The current compression methods are usually tailored to specific models, or do not provide theoretical guarantees. In this paper, we introduce a low–complexity lossless compression algorithm for sparse marked graphs, i.e. graphical data indexed by sparse graphs, which is capable of universally achieving the optimal compression rate in a precisely defined sense. In order to define universality, we employ the framework of local weak convergence, which allows one to make sense of a notion of stochastic processes for graphs. Moreover, we investigate the performance of our algorithm through some experimental results on both synthetic and real–world data.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Universal Low Complexity Compression Algorithm for Sparse Marked Graphs\",\"authors\":\"Payam Delgosha, V. Anantharam\",\"doi\":\"10.1109/ISIT44484.2020.9174300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many modern applications involve accessing and processing graphical data, i.e. data that is naturally indexed by graphs. Examples come from internet graphs, social networks, genomics and proteomics, and other sources. The typically large size of such data motivates seeking efficient ways for its compression and decompression. The current compression methods are usually tailored to specific models, or do not provide theoretical guarantees. In this paper, we introduce a low–complexity lossless compression algorithm for sparse marked graphs, i.e. graphical data indexed by sparse graphs, which is capable of universally achieving the optimal compression rate in a precisely defined sense. In order to define universality, we employ the framework of local weak convergence, which allows one to make sense of a notion of stochastic processes for graphs. Moreover, we investigate the performance of our algorithm through some experimental results on both synthetic and real–world data.\",\"PeriodicalId\":159311,\"journal\":{\"name\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT44484.2020.9174300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

许多现代应用程序涉及访问和处理图形数据,即自然由图形索引的数据。例子来自互联网图表、社交网络、基因组学和蛋白质组学以及其他来源。这类数据通常规模很大,促使人们寻求有效的压缩和解压缩方法。目前的压缩方法通常是针对特定的模型量身定制的,或者不能提供理论保证。本文介绍了一种低复杂度的稀疏标记图(即稀疏图索引的图形数据)无损压缩算法,该算法能够在精确定义的意义上普遍实现最优压缩率。为了定义通用性,我们采用了局部弱收敛的框架,它允许人们理解图的随机过程的概念。此外,我们还通过合成数据和真实数据的实验结果来研究我们的算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Universal Low Complexity Compression Algorithm for Sparse Marked Graphs
Many modern applications involve accessing and processing graphical data, i.e. data that is naturally indexed by graphs. Examples come from internet graphs, social networks, genomics and proteomics, and other sources. The typically large size of such data motivates seeking efficient ways for its compression and decompression. The current compression methods are usually tailored to specific models, or do not provide theoretical guarantees. In this paper, we introduce a low–complexity lossless compression algorithm for sparse marked graphs, i.e. graphical data indexed by sparse graphs, which is capable of universally achieving the optimal compression rate in a precisely defined sense. In order to define universality, we employ the framework of local weak convergence, which allows one to make sense of a notion of stochastic processes for graphs. Moreover, we investigate the performance of our algorithm through some experimental results on both synthetic and real–world data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Community Detection with Secondary Latent Variables Capacity of Line-of-Sight MIMO Channels On the Randomized Babai Point A Universal Low Complexity Compression Algorithm for Sparse Marked Graphs An Ideal Secret Sharing Scheme Realizing an Access Structure Based on a Finite Projective Plane of Order 3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1