几何计算10

Florent Becker, T. Besson, J. Durand-Lose, Aurélien Emmanuel, Mohammad-Hadi Foroughmand-Araabi, S. Goliaei, Shahrzad Heydarshahi
{"title":"几何计算10","authors":"Florent Becker, T. Besson, J. Durand-Lose, Aurélien Emmanuel, Mohammad-Hadi Foroughmand-Araabi, S. Goliaei, Shahrzad Heydarshahi","doi":"10.1145/3442359","DOIUrl":null,"url":null,"abstract":"Signal machines form an abstract and idealized model of collision computing. Based on dimensionless signals moving on the real line, they model particle/signal dynamics in Cellular Automata. Each particle, or signal, moves at constant speed in continuous time and space. When signals meet, they get replaced by other signals. A signal machine defines the types of available signals, their speeds, and the rules for replacement in collision. A signal machine A simulates another one B if all the space-time diagrams of B can be generated from space-time diagrams of A by removing some signals and renaming other signals according to local information. Given any finite set of speeds S we construct a signal machine that is able to simulate any signal machine whose speeds belong to S. Each signal is simulated by a macro-signal, a ray of parallel signals. Each macro-signal has a main signal located exactly where the simulated signal would be, as well as auxiliary signals that encode its id and the collision rules of the simulated machine. The simulation of a collision, a macro-collision, consists of two phases. In the first phase, macro-signals are shrunk, and then the macro-signals involved in the collision are identified and it is ensured that no other macro-signal comes too close. If some do, the process is aborted and the macro-signals are shrunk, so that the correct macro-collision will eventually be restarted and successfully initiated. Otherwise, the second phase starts: the appropriate collision rule is found and new macro-signals are generated accordingly. Considering all finite sets of speeds S and their corresponding simulators provides an intrinsically universal family of signal machines.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract Geometrical Computation 10\",\"authors\":\"Florent Becker, T. Besson, J. Durand-Lose, Aurélien Emmanuel, Mohammad-Hadi Foroughmand-Araabi, S. Goliaei, Shahrzad Heydarshahi\",\"doi\":\"10.1145/3442359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Signal machines form an abstract and idealized model of collision computing. Based on dimensionless signals moving on the real line, they model particle/signal dynamics in Cellular Automata. Each particle, or signal, moves at constant speed in continuous time and space. When signals meet, they get replaced by other signals. A signal machine defines the types of available signals, their speeds, and the rules for replacement in collision. A signal machine A simulates another one B if all the space-time diagrams of B can be generated from space-time diagrams of A by removing some signals and renaming other signals according to local information. Given any finite set of speeds S we construct a signal machine that is able to simulate any signal machine whose speeds belong to S. Each signal is simulated by a macro-signal, a ray of parallel signals. Each macro-signal has a main signal located exactly where the simulated signal would be, as well as auxiliary signals that encode its id and the collision rules of the simulated machine. The simulation of a collision, a macro-collision, consists of two phases. In the first phase, macro-signals are shrunk, and then the macro-signals involved in the collision are identified and it is ensured that no other macro-signal comes too close. If some do, the process is aborted and the macro-signals are shrunk, so that the correct macro-collision will eventually be restarted and successfully initiated. Otherwise, the second phase starts: the appropriate collision rule is found and new macro-signals are generated accordingly. Considering all finite sets of speeds S and their corresponding simulators provides an intrinsically universal family of signal machines.\",\"PeriodicalId\":198744,\"journal\":{\"name\":\"ACM Transactions on Computation Theory (TOCT)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory (TOCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

信号机构成了一个抽象的、理想化的碰撞计算模型。基于在实线上运动的无量纲信号,对元胞自动机中的粒子/信号动力学进行建模。每个粒子或信号在连续的时间和空间中以恒定的速度运动。当信号相遇时,它们会被其他信号所取代。信号机定义可用信号的类型、速度和碰撞时的替换规则。如果从A的空时图中去掉部分信号,根据局部信息重命名其他信号,可以生成B的所有空时图,则信号机A模拟另一台信号机B。给定任何有限的速度S集合,我们构造一个信号机,它能够模拟任何速度属于S的信号机。每个信号都由一个宏信号(一串并行信号)来模拟。每个宏信号都有一个位于模拟信号所在位置的主信号,以及编码其id和模拟机器碰撞规则的辅助信号。碰撞(宏观碰撞)的模拟包括两个阶段。在第一阶段,对宏观信号进行收缩,然后识别出涉及碰撞的宏观信号,并确保没有其他宏观信号过于接近。如果发生冲突,则中止进程并缩小宏信号,以便最终重新启动并成功启动正确的宏碰撞。否则,开始第二阶段:找到合适的碰撞规则,并相应地生成新的宏信号。考虑到速度的所有有限集,S及其相应的模拟器提供了一个本质上通用的信号机族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abstract Geometrical Computation 10
Signal machines form an abstract and idealized model of collision computing. Based on dimensionless signals moving on the real line, they model particle/signal dynamics in Cellular Automata. Each particle, or signal, moves at constant speed in continuous time and space. When signals meet, they get replaced by other signals. A signal machine defines the types of available signals, their speeds, and the rules for replacement in collision. A signal machine A simulates another one B if all the space-time diagrams of B can be generated from space-time diagrams of A by removing some signals and renaming other signals according to local information. Given any finite set of speeds S we construct a signal machine that is able to simulate any signal machine whose speeds belong to S. Each signal is simulated by a macro-signal, a ray of parallel signals. Each macro-signal has a main signal located exactly where the simulated signal would be, as well as auxiliary signals that encode its id and the collision rules of the simulated machine. The simulation of a collision, a macro-collision, consists of two phases. In the first phase, macro-signals are shrunk, and then the macro-signals involved in the collision are identified and it is ensured that no other macro-signal comes too close. If some do, the process is aborted and the macro-signals are shrunk, so that the correct macro-collision will eventually be restarted and successfully initiated. Otherwise, the second phase starts: the appropriate collision rule is found and new macro-signals are generated accordingly. Considering all finite sets of speeds S and their corresponding simulators provides an intrinsically universal family of signal machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Polynomial Degree Bound on Equations for Non-rigid Matrices and Small Linear Circuits Optimal Distribution-Free Sample-Based Testing of Subsequence-Freeness with One-Sided Error Approximate Degree, Weight, and Indistinguishability The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems Multiplicative Parameterization Above a Guarantee
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1