智能辅导系统中基于学习行为数据的学生聚类

Ines Šarić-Grgić, Ani Grubišić, Ljiljana Šerić, T. Robinson
{"title":"智能辅导系统中基于学习行为数据的学生聚类","authors":"Ines Šarić-Grgić, Ani Grubišić, Ljiljana Šerić, T. Robinson","doi":"10.4018/ijdet.2020040105","DOIUrl":null,"url":null,"abstract":"The idea of clustering students according to their online learning behavior has the potential of providingmoreadaptivescaffoldingbytheintelligenttutoringsystemitselforbyahumanteacher. WiththeaimofidentifyingstudentgroupswhowouldbenefitfromthesameinterventioninACwareTutor, this researchexaminedonline learningbehaviorusing8 trackingvariables: the total numberofcontentpagesseeninthelearningprocess;thetotalnumberofconcepts;thetotalonline score;thetotaltimespentonline;thetotalnumberoflogins;thestereotypeaftertheinitialtest,the finalstereotype,andthemeanstereotypevariability.Thepreviousmeasureswereusedinafour-step analysisthatconsistedofdatapreprocessing,dimensionalityreduction,theclustering,andtheanalysis ofaposttestperformanceonacontentproficiencyexam.Theresultswerealsousedtoconstructthe decisiontreeinordertogetahuman-readabledescriptionofstudentclusters. KEywoRDS Blended Learning, Clustering, Decision Tree, Educational Data Mining, Flipped Classroom, Intelligent Tutoring System, Online Learning Behavior, Principal Component Analysis","PeriodicalId":298910,"journal":{"name":"Int. J. Distance Educ. Technol.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Student Clustering Based on Learning Behavior Data in the Intelligent Tutoring System\",\"authors\":\"Ines Šarić-Grgić, Ani Grubišić, Ljiljana Šerić, T. Robinson\",\"doi\":\"10.4018/ijdet.2020040105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The idea of clustering students according to their online learning behavior has the potential of providingmoreadaptivescaffoldingbytheintelligenttutoringsystemitselforbyahumanteacher. WiththeaimofidentifyingstudentgroupswhowouldbenefitfromthesameinterventioninACwareTutor, this researchexaminedonline learningbehaviorusing8 trackingvariables: the total numberofcontentpagesseeninthelearningprocess;thetotalnumberofconcepts;thetotalonline score;thetotaltimespentonline;thetotalnumberoflogins;thestereotypeaftertheinitialtest,the finalstereotype,andthemeanstereotypevariability.Thepreviousmeasureswereusedinafour-step analysisthatconsistedofdatapreprocessing,dimensionalityreduction,theclustering,andtheanalysis ofaposttestperformanceonacontentproficiencyexam.Theresultswerealsousedtoconstructthe decisiontreeinordertogetahuman-readabledescriptionofstudentclusters. KEywoRDS Blended Learning, Clustering, Decision Tree, Educational Data Mining, Flipped Classroom, Intelligent Tutoring System, Online Learning Behavior, Principal Component Analysis\",\"PeriodicalId\":298910,\"journal\":{\"name\":\"Int. J. Distance Educ. Technol.\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Distance Educ. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdet.2020040105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Distance Educ. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdet.2020040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

根据学生的在线学习行为将他们聚集在一起的想法具有providingmoreadaptivescaffoldingbytheintelligenttutoringsystemitselforbyahumanteacher的潜力。目标的识别组织学生给将从相同的受益干预在ACware导师,研究在线学习检查行为使用8跟踪变量:总内容的页面数量见过学习过程;的总数量概念;总在线的分数;总花时间的在线;的总数量登录;刻板印象初始测试后,最终的刻板印象,意味着原型可变性。Thepreviousmeasureswereusedinafour-step analysisthatconsistedofdatapreprocessing,dimensionalityreduction,theclustering,andtheanalysis ofaposttestperformanceonacontentproficiencyexam。Theresultswerealsousedtoconstructthe decisiontreeinordertogetahuman-readabledescriptionofstudentclusters。关键词:混合学习,聚类,决策树,教育数据挖掘,翻转课堂,智能辅导系统,在线学习行为,主成分分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Student Clustering Based on Learning Behavior Data in the Intelligent Tutoring System
The idea of clustering students according to their online learning behavior has the potential of providingmoreadaptivescaffoldingbytheintelligenttutoringsystemitselforbyahumanteacher. WiththeaimofidentifyingstudentgroupswhowouldbenefitfromthesameinterventioninACwareTutor, this researchexaminedonline learningbehaviorusing8 trackingvariables: the total numberofcontentpagesseeninthelearningprocess;thetotalnumberofconcepts;thetotalonline score;thetotaltimespentonline;thetotalnumberoflogins;thestereotypeaftertheinitialtest,the finalstereotype,andthemeanstereotypevariability.Thepreviousmeasureswereusedinafour-step analysisthatconsistedofdatapreprocessing,dimensionalityreduction,theclustering,andtheanalysis ofaposttestperformanceonacontentproficiencyexam.Theresultswerealsousedtoconstructthe decisiontreeinordertogetahuman-readabledescriptionofstudentclusters. KEywoRDS Blended Learning, Clustering, Decision Tree, Educational Data Mining, Flipped Classroom, Intelligent Tutoring System, Online Learning Behavior, Principal Component Analysis
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dialogue-Like Video Created From a Monologue Lecture Video Provides Better Learning Experience Research on the Impact of Information Literacy on the Creativity of Foreign Language Teachers in Chinese Universities Under the Background of Big Data Exploration on Construction of Mobile Communication Experimental Teaching Based on Virtual-Real Combination A Research on Online Teaching Behavior of Chinese Local University Teachers Based on Cluster Analysis Effectiveness and Evaluation of Online and Offline Blended Learning for an Electronic Design Practical Training Course
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1