语音自动标点生成

Wenzhu Shen, Roger Peng Yu, F. Seide, Ji Wu
{"title":"语音自动标点生成","authors":"Wenzhu Shen, Roger Peng Yu, F. Seide, Ji Wu","doi":"10.1109/ASRU.2009.5373365","DOIUrl":null,"url":null,"abstract":"Automatic generation of punctuation is an essential feature for many speech-to-text transcription tasks. This paper describes a Maximum A-Posteriori (MAP) approach for inserting punctuation marks into raw word sequences obtained from Automatic Speech Recognition (ASR). The system consists of an “acoustic model” (AM) for prosodic features (actually pause duration) and a “language model” (LM) for text-only features. The LM combines three components: an MLP-based trigger-word model and a forward and a backward trigram punctuation predictor. The separation into acoustic and language model allows to learn these models on different corpora, especially allowing the LM to be trained on large amounts of data (text) for which no acoustic information is available. We find that the trigger-word LM is very useful, and further improvement can be achieved when combining both prosodic and lexical information. We achieve an F-measure of 81.0% and 56.5% for voicemails and podcasts, respectively, on reference transcripts, and 69.6% for voicemails on ASR transcripts.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automatic punctuation generation for speech\",\"authors\":\"Wenzhu Shen, Roger Peng Yu, F. Seide, Ji Wu\",\"doi\":\"10.1109/ASRU.2009.5373365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic generation of punctuation is an essential feature for many speech-to-text transcription tasks. This paper describes a Maximum A-Posteriori (MAP) approach for inserting punctuation marks into raw word sequences obtained from Automatic Speech Recognition (ASR). The system consists of an “acoustic model” (AM) for prosodic features (actually pause duration) and a “language model” (LM) for text-only features. The LM combines three components: an MLP-based trigger-word model and a forward and a backward trigram punctuation predictor. The separation into acoustic and language model allows to learn these models on different corpora, especially allowing the LM to be trained on large amounts of data (text) for which no acoustic information is available. We find that the trigger-word LM is very useful, and further improvement can be achieved when combining both prosodic and lexical information. We achieve an F-measure of 81.0% and 56.5% for voicemails and podcasts, respectively, on reference transcripts, and 69.6% for voicemails on ASR transcripts.\",\"PeriodicalId\":292194,\"journal\":{\"name\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2009.5373365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

自动生成标点符号是许多语音到文本转录任务的基本功能。本文描述了一种将标点符号插入到自动语音识别(ASR)获得的原始单词序列中的最大后验(MAP)方法。该系统由韵律特征(实际上是暂停时间)的“声学模型”(AM)和纯文本特征的“语言模型”(LM)组成。LM结合了三个组件:一个基于mlp的触发词模型和一个前向和后向三重标点预测器。声学和语言模型的分离允许在不同的语料库上学习这些模型,特别是允许LM在没有声学信息的大量数据(文本)上进行训练。我们发现触发词LM非常有用,并且当韵律和词汇信息结合在一起时可以进一步改进。语音邮件和播客在参考文本上的f值分别为81.0%和56.5%,语音邮件在ASR文本上的f值分别为69.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic punctuation generation for speech
Automatic generation of punctuation is an essential feature for many speech-to-text transcription tasks. This paper describes a Maximum A-Posteriori (MAP) approach for inserting punctuation marks into raw word sequences obtained from Automatic Speech Recognition (ASR). The system consists of an “acoustic model” (AM) for prosodic features (actually pause duration) and a “language model” (LM) for text-only features. The LM combines three components: an MLP-based trigger-word model and a forward and a backward trigram punctuation predictor. The separation into acoustic and language model allows to learn these models on different corpora, especially allowing the LM to be trained on large amounts of data (text) for which no acoustic information is available. We find that the trigger-word LM is very useful, and further improvement can be achieved when combining both prosodic and lexical information. We achieve an F-measure of 81.0% and 56.5% for voicemails and podcasts, respectively, on reference transcripts, and 69.6% for voicemails on ASR transcripts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of OOV words by combining acoustic confidence measures with linguistic features Automatic translation from parallel speech: Simultaneous interpretation as MT training data Local and global models for spontaneous speech segment detection and characterization Automatic punctuation generation for speech Response timing generation and response type selection for a spontaneous spoken dialog system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1