通过集成OpenACC扩展PluTo的多设备

Tim Süß, Tunahan Kaya, Dustin Feld
{"title":"通过集成OpenACC扩展PluTo的多设备","authors":"Tim Süß, Tunahan Kaya, Dustin Feld","doi":"10.1109/PDP2018.2018.00049","DOIUrl":null,"url":null,"abstract":"For many years now, processor vendors increased the performance of their devices by adding more cores and wider vectorization units to their CPUs instead of scaling up the processors' clock frequency. Moreover, GPUs became popular for solving problems with even more parallel compute power. To exploit the full potential of modern compute devices, specific codes are necessary which are often coded in a hardware-specific manner. Usually, the codes for CPUs are not usable for GPUs and vice versa. The programming API OpenACC tries to close this gap by enabling one code-base to be suitable and optimized for many devices. Nevertheless, OpenACC is rarely used by `standard programmers' and while different code transformers (like PluTo) allow for (semi-)automatic code parallelization for multi-core CPUs, they do generally not support OpenACC yet. We present first promising results of our PluTo extension that generates parallelized codes using OpenACC. Using our transformer we create programs which exploit the parallelism of different platforms without any manual modifications and we achieve performance speedups of up to 100 in comparison to the original unoptimized programs and accelations of 2.05 in comparison to equally generated OpenMP codes.","PeriodicalId":333367,"journal":{"name":"2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending PluTo for Multiple Devices by Integrating OpenACC\",\"authors\":\"Tim Süß, Tunahan Kaya, Dustin Feld\",\"doi\":\"10.1109/PDP2018.2018.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For many years now, processor vendors increased the performance of their devices by adding more cores and wider vectorization units to their CPUs instead of scaling up the processors' clock frequency. Moreover, GPUs became popular for solving problems with even more parallel compute power. To exploit the full potential of modern compute devices, specific codes are necessary which are often coded in a hardware-specific manner. Usually, the codes for CPUs are not usable for GPUs and vice versa. The programming API OpenACC tries to close this gap by enabling one code-base to be suitable and optimized for many devices. Nevertheless, OpenACC is rarely used by `standard programmers' and while different code transformers (like PluTo) allow for (semi-)automatic code parallelization for multi-core CPUs, they do generally not support OpenACC yet. We present first promising results of our PluTo extension that generates parallelized codes using OpenACC. Using our transformer we create programs which exploit the parallelism of different platforms without any manual modifications and we achieve performance speedups of up to 100 in comparison to the original unoptimized programs and accelations of 2.05 in comparison to equally generated OpenMP codes.\",\"PeriodicalId\":333367,\"journal\":{\"name\":\"2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP2018.2018.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP2018.2018.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多年来,处理器供应商通过增加更多的内核和更宽的向量化单元来提高其设备的性能,而不是增加处理器的时钟频率。此外,gpu在解决具有更多并行计算能力的问题方面变得流行起来。为了充分利用现代计算设备的潜力,需要特定的代码,这些代码通常以特定于硬件的方式编码。通常,cpu的代码不能用于gpu,反之亦然。编程API OpenACC试图通过使一个代码库适合并优化许多设备来缩小这一差距。尽管如此,“标准程序员”很少使用OpenACC,尽管不同的代码转换器(如PluTo)允许多核cpu的(半)自动代码并行化,但它们通常还不支持OpenACC。我们展示了PluTo扩展的第一个有希望的结果,该扩展使用OpenACC生成并行代码。使用我们的转换器,我们创建的程序可以利用不同平台的并行性,而无需任何手动修改,与原始未优化的程序相比,我们实现了高达100的性能加速,与同等生成的OpenMP代码相比,我们实现了2.05的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extending PluTo for Multiple Devices by Integrating OpenACC
For many years now, processor vendors increased the performance of their devices by adding more cores and wider vectorization units to their CPUs instead of scaling up the processors' clock frequency. Moreover, GPUs became popular for solving problems with even more parallel compute power. To exploit the full potential of modern compute devices, specific codes are necessary which are often coded in a hardware-specific manner. Usually, the codes for CPUs are not usable for GPUs and vice versa. The programming API OpenACC tries to close this gap by enabling one code-base to be suitable and optimized for many devices. Nevertheless, OpenACC is rarely used by `standard programmers' and while different code transformers (like PluTo) allow for (semi-)automatic code parallelization for multi-core CPUs, they do generally not support OpenACC yet. We present first promising results of our PluTo extension that generates parallelized codes using OpenACC. Using our transformer we create programs which exploit the parallelism of different platforms without any manual modifications and we achieve performance speedups of up to 100 in comparison to the original unoptimized programs and accelations of 2.05 in comparison to equally generated OpenMP codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TMbarrier: Speculative Barriers Using Hardware Transactional Memory Evaluating the Effect of Multi-Tenancy Patterns in Containerized Cloud-Hosted Content Management System A Generic Learning Multi-agent-System Approach for Spatio-Temporal-, Thermal- and Energy-Aware Scheduling Developing and Using a Geometric Multigrid, Unstructured Grid Mini-Application to Assess Many-Core Architectures Extending PluTo for Multiple Devices by Integrating OpenACC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1