自动建立信息安全漏洞数据库

A. D. Arnold, B. M. Hyla, N. Rowe
{"title":"自动建立信息安全漏洞数据库","authors":"A. D. Arnold, B. M. Hyla, N. Rowe","doi":"10.1109/IAW.2006.1652119","DOIUrl":null,"url":null,"abstract":"Our goal was to collect data from the myriad computer vulnerability notices that exist on the World Wide Web and to mine it for interesting information and patterns. Surprisingly, no single database currently brings together all the various kinds of data from the vulnerability sites. Of particular interest to us was author and discoverer information since this provides valuable information about who is active in information security and occasionally might indicate the authors of exploits; current databases do not connect this to other relevant information. We found that the searchable parameters of the existing vulnerability databases were limited and inconsistent. Consequently, it is very difficult to get complete information about computer vulnerabilities by searching Web sites. Our approach was to bring together this information into a composite database. We did automated data collection from the existing Web vulnerability databases by creating Web bots that traversed Web sites and retrieved selected information from them, then imported the collected Web data into a relational database. A browser provides Web-based access to this database. (J. Steffan, et al., March 2002) and (R. Iyer, et al., Oct. 2003) shows how such information can be used to build models of attacks in the form of graphs, trees, and finite-state machines, and thereby develop methods for system protection","PeriodicalId":326306,"journal":{"name":"2006 IEEE Information Assurance Workshop","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Automatically Building an Information-Security Vulnerability Database\",\"authors\":\"A. D. Arnold, B. M. Hyla, N. Rowe\",\"doi\":\"10.1109/IAW.2006.1652119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our goal was to collect data from the myriad computer vulnerability notices that exist on the World Wide Web and to mine it for interesting information and patterns. Surprisingly, no single database currently brings together all the various kinds of data from the vulnerability sites. Of particular interest to us was author and discoverer information since this provides valuable information about who is active in information security and occasionally might indicate the authors of exploits; current databases do not connect this to other relevant information. We found that the searchable parameters of the existing vulnerability databases were limited and inconsistent. Consequently, it is very difficult to get complete information about computer vulnerabilities by searching Web sites. Our approach was to bring together this information into a composite database. We did automated data collection from the existing Web vulnerability databases by creating Web bots that traversed Web sites and retrieved selected information from them, then imported the collected Web data into a relational database. A browser provides Web-based access to this database. (J. Steffan, et al., March 2002) and (R. Iyer, et al., Oct. 2003) shows how such information can be used to build models of attacks in the form of graphs, trees, and finite-state machines, and thereby develop methods for system protection\",\"PeriodicalId\":326306,\"journal\":{\"name\":\"2006 IEEE Information Assurance Workshop\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Information Assurance Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAW.2006.1652119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Assurance Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAW.2006.1652119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们的目标是从万维网上存在的无数计算机漏洞通知中收集数据,并从中挖掘出有趣的信息和模式。令人惊讶的是,目前还没有一个数据库汇集了来自漏洞站点的所有不同类型的数据。我们特别感兴趣的是作者和发现者信息,因为这提供了关于谁在信息安全领域活跃的有价值的信息,有时可能会指出漏洞利用的作者;当前的数据库没有将其与其他相关信息连接起来。我们发现现有漏洞数据库的可搜索参数有限且不一致。因此,通过搜索网站来获得有关计算机漏洞的完整信息是非常困难的。我们的方法是将这些信息整合到一个复合数据库中。我们通过创建Web机器人从现有的Web漏洞数据库中自动收集数据,这些机器人遍历Web站点并从中检索选定的信息,然后将收集到的Web数据导入到关系数据库中。浏览器提供对该数据库的基于web的访问。(J. Steffan, et al., 2002年3月)和(R. Iyer, et al., 2003年10月)展示了如何使用这些信息以图、树和有限状态机的形式构建攻击模型,从而开发系统保护方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatically Building an Information-Security Vulnerability Database
Our goal was to collect data from the myriad computer vulnerability notices that exist on the World Wide Web and to mine it for interesting information and patterns. Surprisingly, no single database currently brings together all the various kinds of data from the vulnerability sites. Of particular interest to us was author and discoverer information since this provides valuable information about who is active in information security and occasionally might indicate the authors of exploits; current databases do not connect this to other relevant information. We found that the searchable parameters of the existing vulnerability databases were limited and inconsistent. Consequently, it is very difficult to get complete information about computer vulnerabilities by searching Web sites. Our approach was to bring together this information into a composite database. We did automated data collection from the existing Web vulnerability databases by creating Web bots that traversed Web sites and retrieved selected information from them, then imported the collected Web data into a relational database. A browser provides Web-based access to this database. (J. Steffan, et al., March 2002) and (R. Iyer, et al., Oct. 2003) shows how such information can be used to build models of attacks in the form of graphs, trees, and finite-state machines, and thereby develop methods for system protection
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a Threat Model for Enterprise Storage Area Networks Automatically Building an Information-Security Vulnerability Database Analyzing Attack Trees using Generalized Stochastic Petri Nets Secure State Processing Visual Reverse Turing Tests: A False Sense of Security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1