基于特征提取、选择和融合的恶意软件分类方法

Mansour Ahmadi, G. Giacinto, Dmitry Ulyanov, Stanislav Semenov, Mikhail Trofimov
{"title":"基于特征提取、选择和融合的恶意软件分类方法","authors":"Mansour Ahmadi, G. Giacinto, Dmitry Ulyanov, Stanislav Semenov, Mikhail Trofimov","doi":"10.1145/2857705.2857713","DOIUrl":null,"url":null,"abstract":"Modern malware is designed with mutation characteristics, namely polymorphism and metamorphism, which causes an enormous growth in the number of variants of malware samples. Categorization of malware samples on the basis of their behaviors is essential for the computer security community, because they receive huge number of malware everyday, and the signature extraction process is usually based on malicious parts characterizing malware families. Microsoft released a malware classification challenge in 2015 with a huge dataset of near 0.5 terabytes of data, containing more than 20K malware samples. The analysis of this dataset inspired the development of a novel paradigm that is effective in categorizing malware variants into their actual family groups. This paradigm is presented and discussed in the present paper, where emphasis has been given to the phases related to the extraction, and selection of a set of novel features for the effective representation of malware samples. Features can be grouped according to different characteristics of malware behavior, and their fusion is performed according to a per-class weighting paradigm. The proposed method achieved a very high accuracy ($\\approx$ 0.998) on the Microsoft Malware Challenge dataset.","PeriodicalId":377412,"journal":{"name":"Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"293","resultStr":"{\"title\":\"Novel Feature Extraction, Selection and Fusion for Effective Malware Family Classification\",\"authors\":\"Mansour Ahmadi, G. Giacinto, Dmitry Ulyanov, Stanislav Semenov, Mikhail Trofimov\",\"doi\":\"10.1145/2857705.2857713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern malware is designed with mutation characteristics, namely polymorphism and metamorphism, which causes an enormous growth in the number of variants of malware samples. Categorization of malware samples on the basis of their behaviors is essential for the computer security community, because they receive huge number of malware everyday, and the signature extraction process is usually based on malicious parts characterizing malware families. Microsoft released a malware classification challenge in 2015 with a huge dataset of near 0.5 terabytes of data, containing more than 20K malware samples. The analysis of this dataset inspired the development of a novel paradigm that is effective in categorizing malware variants into their actual family groups. This paradigm is presented and discussed in the present paper, where emphasis has been given to the phases related to the extraction, and selection of a set of novel features for the effective representation of malware samples. Features can be grouped according to different characteristics of malware behavior, and their fusion is performed according to a per-class weighting paradigm. The proposed method achieved a very high accuracy ($\\\\approx$ 0.998) on the Microsoft Malware Challenge dataset.\",\"PeriodicalId\":377412,\"journal\":{\"name\":\"Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"293\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2857705.2857713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2857705.2857713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 293

摘要

现代恶意软件设计具有突变特征,即多态性和变质性,这导致恶意软件样本的变体数量急剧增长。基于行为对恶意软件样本进行分类对于计算机安全社区来说至关重要,因为他们每天都会收到大量的恶意软件,而签名提取过程通常是基于恶意软件家族的恶意部分特征。微软在2015年发布了一个恶意软件分类挑战,其中包含近0.5 tb数据的庞大数据集,包含超过20K个恶意软件样本。对该数据集的分析激发了一种新的范式的发展,这种范式可以有效地将恶意软件变体分类到其实际的家族组中。本文提出并讨论了这种范式,其中重点是与提取相关的阶段,以及为有效表示恶意软件样本而选择一组新特征。特征可以根据恶意软件行为的不同特征进行分组,它们的融合是根据每个类的加权范式进行的。该方法在Microsoft Malware Challenge数据集上获得了非常高的准确率($\约$ 0.998)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Feature Extraction, Selection and Fusion for Effective Malware Family Classification
Modern malware is designed with mutation characteristics, namely polymorphism and metamorphism, which causes an enormous growth in the number of variants of malware samples. Categorization of malware samples on the basis of their behaviors is essential for the computer security community, because they receive huge number of malware everyday, and the signature extraction process is usually based on malicious parts characterizing malware families. Microsoft released a malware classification challenge in 2015 with a huge dataset of near 0.5 terabytes of data, containing more than 20K malware samples. The analysis of this dataset inspired the development of a novel paradigm that is effective in categorizing malware variants into their actual family groups. This paradigm is presented and discussed in the present paper, where emphasis has been given to the phases related to the extraction, and selection of a set of novel features for the effective representation of malware samples. Features can be grouped according to different characteristics of malware behavior, and their fusion is performed according to a per-class weighting paradigm. The proposed method achieved a very high accuracy ($\approx$ 0.998) on the Microsoft Malware Challenge dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interoperability of Relationship- and Role-Based Access Control DIVERSITY Auditing Security Compliance of the Virtualized Infrastructure in the Cloud: Application to OpenStack Evaluating Analysis Tools for Android Apps: Status Quo and Robustness Against Obfuscation Decoding the Mystery of the Internet of Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1