{"title":"一种基于块的皮肤镜图像脱毛算法","authors":"I. Zaqout","doi":"10.18287/2412-6179-2017-41-4-521-527","DOIUrl":null,"url":null,"abstract":"Hair occlusion in dermoscopy images affects the diagnostic operation of the skin lesion. Segmentation and classification of skin lesions are two major steps of the diagnostic operation required by Dermatologists. We propose a new algorithm for hair removal in dermoscopy images that includes two main stages: hair detection and inpainting. In hair detection, a morphological bottom-hat operation is implemented on Y-channel image of YIQ color space followed by a binarization operation. In inpainting, the repaired Y-channel is partitioned into 256 nonoverlapped blocks and for each block, white pixels are replaced by locating the highest peak of using a histogram function and a morphological close operation. Our proposed algorithm reports a true positive rate (sensitivity) of 97.36%, a false positive rate (fall-out) of 4.25%, and a true negative rate (specificity) of 95.75%. The diagnostic accuracy achieved is recorded at a high level of 95.78%.","PeriodicalId":436110,"journal":{"name":"Computer Methods and Programs in Biomedical Signal and Image Processing","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"An Efficient Block-Based Algorithm for Hair Removal in Dermoscopic Images\",\"authors\":\"I. Zaqout\",\"doi\":\"10.18287/2412-6179-2017-41-4-521-527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hair occlusion in dermoscopy images affects the diagnostic operation of the skin lesion. Segmentation and classification of skin lesions are two major steps of the diagnostic operation required by Dermatologists. We propose a new algorithm for hair removal in dermoscopy images that includes two main stages: hair detection and inpainting. In hair detection, a morphological bottom-hat operation is implemented on Y-channel image of YIQ color space followed by a binarization operation. In inpainting, the repaired Y-channel is partitioned into 256 nonoverlapped blocks and for each block, white pixels are replaced by locating the highest peak of using a histogram function and a morphological close operation. Our proposed algorithm reports a true positive rate (sensitivity) of 97.36%, a false positive rate (fall-out) of 4.25%, and a true negative rate (specificity) of 95.75%. The diagnostic accuracy achieved is recorded at a high level of 95.78%.\",\"PeriodicalId\":436110,\"journal\":{\"name\":\"Computer Methods and Programs in Biomedical Signal and Image Processing\",\"volume\":\"254 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods and Programs in Biomedical Signal and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-2017-41-4-521-527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods and Programs in Biomedical Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-2017-41-4-521-527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient Block-Based Algorithm for Hair Removal in Dermoscopic Images
Hair occlusion in dermoscopy images affects the diagnostic operation of the skin lesion. Segmentation and classification of skin lesions are two major steps of the diagnostic operation required by Dermatologists. We propose a new algorithm for hair removal in dermoscopy images that includes two main stages: hair detection and inpainting. In hair detection, a morphological bottom-hat operation is implemented on Y-channel image of YIQ color space followed by a binarization operation. In inpainting, the repaired Y-channel is partitioned into 256 nonoverlapped blocks and for each block, white pixels are replaced by locating the highest peak of using a histogram function and a morphological close operation. Our proposed algorithm reports a true positive rate (sensitivity) of 97.36%, a false positive rate (fall-out) of 4.25%, and a true negative rate (specificity) of 95.75%. The diagnostic accuracy achieved is recorded at a high level of 95.78%.