使用3轴加速度的生物识别认证的新步态度量

Ik-Hyun Youn, Sangil Choi, Richelle Le May, Douglas Bertelsen, Jong-Hoon Youn
{"title":"使用3轴加速度的生物识别认证的新步态度量","authors":"Ik-Hyun Youn, Sangil Choi, Richelle Le May, Douglas Bertelsen, Jong-Hoon Youn","doi":"10.1109/CCNC.2014.6940501","DOIUrl":null,"url":null,"abstract":"Biometric authentication mechanisms are excellent alternatives to often inconvenient interaction authentication methods such as PIN numbers in mobile devices. This research introduces the new concept of using gait signature metrics for biometric authentication. This procedure verifies each subject using only acceleration. We first use a single wireless sensor device to collect data on subjects' gait patterns. By dividing each gait cycle into an Acceleration Phase and a Deceleration Phase, we derive seven periodic and characteristic gait signature metrics. Gait signature metrics can be classified as acceleration metrics, deceleration metrics, and ratio metric. Acceleration metrics represent a degree of dynamic activity when heel-strike actions and mid-stance actions occur, whereas deceleration metrics measure a degree of dynamic activity when mid-stance actions and successive heel-strike of other foot. The last metric, ratio metric, present the relationship between the acceleration metrics and the deceleration metrics. Using the gait signature metrics, we succeeded in differentiating each subject with 100% accuracy.","PeriodicalId":287724,"journal":{"name":"2014 IEEE 11th Consumer Communications and Networking Conference (CCNC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"New gait metrics for biometric authentication using a 3-axis acceleration\",\"authors\":\"Ik-Hyun Youn, Sangil Choi, Richelle Le May, Douglas Bertelsen, Jong-Hoon Youn\",\"doi\":\"10.1109/CCNC.2014.6940501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biometric authentication mechanisms are excellent alternatives to often inconvenient interaction authentication methods such as PIN numbers in mobile devices. This research introduces the new concept of using gait signature metrics for biometric authentication. This procedure verifies each subject using only acceleration. We first use a single wireless sensor device to collect data on subjects' gait patterns. By dividing each gait cycle into an Acceleration Phase and a Deceleration Phase, we derive seven periodic and characteristic gait signature metrics. Gait signature metrics can be classified as acceleration metrics, deceleration metrics, and ratio metric. Acceleration metrics represent a degree of dynamic activity when heel-strike actions and mid-stance actions occur, whereas deceleration metrics measure a degree of dynamic activity when mid-stance actions and successive heel-strike of other foot. The last metric, ratio metric, present the relationship between the acceleration metrics and the deceleration metrics. Using the gait signature metrics, we succeeded in differentiating each subject with 100% accuracy.\",\"PeriodicalId\":287724,\"journal\":{\"name\":\"2014 IEEE 11th Consumer Communications and Networking Conference (CCNC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th Consumer Communications and Networking Conference (CCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCNC.2014.6940501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th Consumer Communications and Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC.2014.6940501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

生物识别身份验证机制是替代通常不方便的交互身份验证方法(如移动设备中的PIN号码)的绝佳选择。本研究引入了利用步态特征度量进行生物特征认证的新概念。此过程仅使用加速度验证每个主题。我们首先使用一个无线传感器设备来收集受试者步态模式的数据。通过将每个步态周期划分为加速阶段和减速阶段,得到了7个周期特征步态特征指标。步态特征度量可以分为加速度量、减速度量和比率度量。当脚后跟撞击动作和中位动作发生时,加速度指标代表一定程度的动态活动,而减速指标衡量中位动作和连续的另一只脚的脚后跟撞击时的动态活动程度。最后一个度量,比率度量,表示加速度度量和减速度量之间的关系。利用步态特征指标,我们成功地以100%的准确率区分了每个受试者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New gait metrics for biometric authentication using a 3-axis acceleration
Biometric authentication mechanisms are excellent alternatives to often inconvenient interaction authentication methods such as PIN numbers in mobile devices. This research introduces the new concept of using gait signature metrics for biometric authentication. This procedure verifies each subject using only acceleration. We first use a single wireless sensor device to collect data on subjects' gait patterns. By dividing each gait cycle into an Acceleration Phase and a Deceleration Phase, we derive seven periodic and characteristic gait signature metrics. Gait signature metrics can be classified as acceleration metrics, deceleration metrics, and ratio metric. Acceleration metrics represent a degree of dynamic activity when heel-strike actions and mid-stance actions occur, whereas deceleration metrics measure a degree of dynamic activity when mid-stance actions and successive heel-strike of other foot. The last metric, ratio metric, present the relationship between the acceleration metrics and the deceleration metrics. Using the gait signature metrics, we succeeded in differentiating each subject with 100% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
COBRA: Lean intra-domain routing in NDN Browser-based web content sharing system Demonstration of adaptive multi-gateway mesh network Asymmetric secret sharing scheme suitable for cloud systems Content protection and secure synchronization of HTML5 local storage data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1