{"title":"基于人脸动作时空依赖的鲁棒性自发面部表情识别建模与开发","authors":"Yan Tong, Jixu Chen, Q. Ji","doi":"10.1109/CVPRW.2009.5204263","DOIUrl":null,"url":null,"abstract":"Facial action provides various types of messages for human communications. Recognizing spontaneous facial actions, however, is very challenging due to subtle facial deformation, frequent head movements, and ambiguous and uncertain facial motion measurements. As a result, current research in facial action recognition is limited to posed facial actions and often in frontal view.Spontaneous facial action is characterized by rigid head movements and nonrigid facial muscular movements. More importantly, it is the spatiotemporal interactions among the rigid and nonrigid facial motions that produce a meaningful and natural facial display. Recognizing this fact, we introduce a probabilistic facial action model based on a dynamic Bayesian network (DBN) to simultaneously and coherently capture rigid and nonrigid facial motions, their spatiotemporal dependencies, and their image measurements. Advanced machine learning methods are introduced to learn the probabilistic facial action model based on both training data and prior knowledge. Facial action recognition is accomplished through probabilistic inference by systemically integrating measurements official motions with the facial action model. Experiments show that the proposed system yields significant improvements in recognizing spontaneous facial actions.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition\",\"authors\":\"Yan Tong, Jixu Chen, Q. Ji\",\"doi\":\"10.1109/CVPRW.2009.5204263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial action provides various types of messages for human communications. Recognizing spontaneous facial actions, however, is very challenging due to subtle facial deformation, frequent head movements, and ambiguous and uncertain facial motion measurements. As a result, current research in facial action recognition is limited to posed facial actions and often in frontal view.Spontaneous facial action is characterized by rigid head movements and nonrigid facial muscular movements. More importantly, it is the spatiotemporal interactions among the rigid and nonrigid facial motions that produce a meaningful and natural facial display. Recognizing this fact, we introduce a probabilistic facial action model based on a dynamic Bayesian network (DBN) to simultaneously and coherently capture rigid and nonrigid facial motions, their spatiotemporal dependencies, and their image measurements. Advanced machine learning methods are introduced to learn the probabilistic facial action model based on both training data and prior knowledge. Facial action recognition is accomplished through probabilistic inference by systemically integrating measurements official motions with the facial action model. Experiments show that the proposed system yields significant improvements in recognizing spontaneous facial actions.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition
Facial action provides various types of messages for human communications. Recognizing spontaneous facial actions, however, is very challenging due to subtle facial deformation, frequent head movements, and ambiguous and uncertain facial motion measurements. As a result, current research in facial action recognition is limited to posed facial actions and often in frontal view.Spontaneous facial action is characterized by rigid head movements and nonrigid facial muscular movements. More importantly, it is the spatiotemporal interactions among the rigid and nonrigid facial motions that produce a meaningful and natural facial display. Recognizing this fact, we introduce a probabilistic facial action model based on a dynamic Bayesian network (DBN) to simultaneously and coherently capture rigid and nonrigid facial motions, their spatiotemporal dependencies, and their image measurements. Advanced machine learning methods are introduced to learn the probabilistic facial action model based on both training data and prior knowledge. Facial action recognition is accomplished through probabilistic inference by systemically integrating measurements official motions with the facial action model. Experiments show that the proposed system yields significant improvements in recognizing spontaneous facial actions.