使用深度强化学习生成API测试数据

Steyn Huurman, Xiaoying Bai, Thomas Hirtz
{"title":"使用深度强化学习生成API测试数据","authors":"Steyn Huurman, Xiaoying Bai, Thomas Hirtz","doi":"10.1145/3387940.3392214","DOIUrl":null,"url":null,"abstract":"Testing is critical to ensure the quality of widely-used web APIs. Automatic test data generation can help to reduce cost and improve overall effectiveness. This is commonly accomplished by using the powerful concept of search-based software testing (SBST). However, with web APIs growing larger and larger, SBST techniques face scalability challenges. This paper introduces a novel SBST based approach for generating API test data using deep reinforcement learning (DRL) as the search algorithm. By exploring the benefits of DRL in the context of scalable API test data generation, we show its potential as alternative to traditional search algorithms.","PeriodicalId":309659,"journal":{"name":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Generating API Test Data Using Deep Reinforcement Learning\",\"authors\":\"Steyn Huurman, Xiaoying Bai, Thomas Hirtz\",\"doi\":\"10.1145/3387940.3392214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Testing is critical to ensure the quality of widely-used web APIs. Automatic test data generation can help to reduce cost and improve overall effectiveness. This is commonly accomplished by using the powerful concept of search-based software testing (SBST). However, with web APIs growing larger and larger, SBST techniques face scalability challenges. This paper introduces a novel SBST based approach for generating API test data using deep reinforcement learning (DRL) as the search algorithm. By exploring the benefits of DRL in the context of scalable API test data generation, we show its potential as alternative to traditional search algorithms.\",\"PeriodicalId\":309659,\"journal\":{\"name\":\"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3387940.3392214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387940.3392214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

测试对于确保广泛使用的web api的质量至关重要。自动测试数据生成可以帮助降低成本并提高整体效率。这通常是通过使用强大的基于搜索的软件测试(SBST)概念来完成的。然而,随着web api变得越来越大,SBST技术面临着可扩展性的挑战。本文介绍了一种基于SBST的API测试数据生成方法,该方法采用深度强化学习(DRL)作为搜索算法。通过探索DRL在可扩展API测试数据生成环境中的优势,我们展示了它作为传统搜索算法替代方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generating API Test Data Using Deep Reinforcement Learning
Testing is critical to ensure the quality of widely-used web APIs. Automatic test data generation can help to reduce cost and improve overall effectiveness. This is commonly accomplished by using the powerful concept of search-based software testing (SBST). However, with web APIs growing larger and larger, SBST techniques face scalability challenges. This paper introduces a novel SBST based approach for generating API test data using deep reinforcement learning (DRL) as the search algorithm. By exploring the benefits of DRL in the context of scalable API test data generation, we show its potential as alternative to traditional search algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Preliminary Systematic Mapping on Software Engineering for Robotic Systems: A Software Quality Perspective Generating API Test Data Using Deep Reinforcement Learning Human Factors in the Study of Automatic Software Repair: Future Directions for Research with Industry Strategies for Crowdworkers to Overcome Barriers in Competition-based Software Crowdsourcing Development Centralized Generic Interfaces in Hardware/Software Co-design for AI Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1