面向不断更新的仿真模型:结合自动化原始数据采集和自动化数据处理

A. Skoogh, J. Michaloski, Nils Bengtsson
{"title":"面向不断更新的仿真模型:结合自动化原始数据采集和自动化数据处理","authors":"A. Skoogh, J. Michaloski, Nils Bengtsson","doi":"10.1109/WSC.2010.5678901","DOIUrl":null,"url":null,"abstract":"Discrete Event Simulation (DES) is a powerful tool for efficiency improvements in production. However, instead of integrating the tool in the daily work of production engineers, companies apply it mostly in single-purpose studies such as major investment projects. One significant reason is the extensive time-consumption for input data management, which has to be performed for every simulation analysis to avoid making decisions based upon obsolete facts. This paper presents an approach that combines automated raw data collection and automated processing of raw data to simulation information. MTConnect is used for collection of raw data and the GDM-Tool is applied for data processing. The purpose is to enable efficient reuse of DES models by reducing the time-consumption for input data management. Furthermore, the approach is evaluated using production data from the aerospace industry.","PeriodicalId":272260,"journal":{"name":"Proceedings of the 2010 Winter Simulation Conference","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Towards continuously updated simulation models: combining automated raw data collection and automated data processing\",\"authors\":\"A. Skoogh, J. Michaloski, Nils Bengtsson\",\"doi\":\"10.1109/WSC.2010.5678901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrete Event Simulation (DES) is a powerful tool for efficiency improvements in production. However, instead of integrating the tool in the daily work of production engineers, companies apply it mostly in single-purpose studies such as major investment projects. One significant reason is the extensive time-consumption for input data management, which has to be performed for every simulation analysis to avoid making decisions based upon obsolete facts. This paper presents an approach that combines automated raw data collection and automated processing of raw data to simulation information. MTConnect is used for collection of raw data and the GDM-Tool is applied for data processing. The purpose is to enable efficient reuse of DES models by reducing the time-consumption for input data management. Furthermore, the approach is evaluated using production data from the aerospace industry.\",\"PeriodicalId\":272260,\"journal\":{\"name\":\"Proceedings of the 2010 Winter Simulation Conference\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2010 Winter Simulation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2010.5678901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2010 Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2010.5678901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

离散事件仿真(DES)是提高生产效率的有力工具。然而,公司并没有将该工具整合到生产工程师的日常工作中,而是将其主要应用于单一目的的研究,如重大投资项目。一个重要的原因是输入数据管理的大量时间消耗,必须为每个模拟分析执行输入数据管理,以避免根据过时的事实做出决策。提出了一种将原始数据自动采集与原始数据自动处理相结合的仿真信息处理方法。原始数据采集采用MTConnect,数据处理采用GDM-Tool。其目的是通过减少输入数据管理的时间消耗来实现DES模型的有效重用。此外,利用航空航天工业的生产数据对该方法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards continuously updated simulation models: combining automated raw data collection and automated data processing
Discrete Event Simulation (DES) is a powerful tool for efficiency improvements in production. However, instead of integrating the tool in the daily work of production engineers, companies apply it mostly in single-purpose studies such as major investment projects. One significant reason is the extensive time-consumption for input data management, which has to be performed for every simulation analysis to avoid making decisions based upon obsolete facts. This paper presents an approach that combines automated raw data collection and automated processing of raw data to simulation information. MTConnect is used for collection of raw data and the GDM-Tool is applied for data processing. The purpose is to enable efficient reuse of DES models by reducing the time-consumption for input data management. Furthermore, the approach is evaluated using production data from the aerospace industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An exploration of the effects of maintenance manning on Combat Mission Readiness utilizing agent based modeling Project management simulation with PTB Project Team Builder Agent-based simulation tutorial - simulation of emergent behavior and differences between agent-based simulation and discrete-event simulation Modeling and simulation method to find and eliminate bottlenecks in production logistics systems Machine control level simulation of an AS/RS in the automotive industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1