纳米电子学器件和互连的性能限制和可能的替代方案

K. Saraswat
{"title":"纳米电子学器件和互连的性能限制和可能的替代方案","authors":"K. Saraswat","doi":"10.1109/ISQED.2004.1283695","DOIUrl":null,"url":null,"abstract":"For over three decades, there has been a quadrupling of transistor density and a doubling of electrical performance every 2 to 3 years. Si transistor technology, in particular CMOS has played a pivotal role in this. It is believed that continued scaling will take the industry down to the 35-nm technology node, at the limit of the ”long-term” range of the International Technology Roadmap for Semiconductors (ITRS). However, it is also well accepted that this long-term range of the 70-nm to 35-nm nodes remains solidly in the “no-known solution” category. The difficulty in scaling the conventional MOSFET makes it prudent to search for alternative device structures. This will require new structural, material and fabrication technology solutions that are generally compatible with current and forecasted installed Semiconductor Manufacturing. In addition, new and revolutionary device concepts need to be discovered and evolved. These can be split into two categories: one is the continued used of silicon FET-type devices but with additional materials, e.g., Ge and innovative structural aspects that deviate from the classical planar/bulk MOSFET, e.g., double gate MOSFET. The second category is a set of potentially entirely different information processing and transmission devices from the transistor as we know it, e.g. silicon-based quantum-effect devices, nano-tube electronics and molecular and organic semiconductor electronics. Continuous scaling of VLSI circuits can pose significant problems for interconnects, especially for those responsible for long distance communication on a high performance chip. Our modeling predicts that the situation is worse than anticipated in the ITRS, which assumes that the resistivity of copper will not change appreciably with scaling in the future. We show that resistance of interconnect wires in light of scaling induced increase in electron surface scattering, fractional cross section area occupied by the high resistivity barrier and realistic interconnect operation temperature will lead to a significant rise in the effective resistivity of Cu. As a result both power and delay of these interconnects is likely to rise significantly in the future. In the light of various metal interconnect limitations, alternate solutions need to be pursued. We focus on two such solutions, optical interconnects and three-dimensional (3-D) ICs with multiplicative Si layers.","PeriodicalId":302936,"journal":{"name":"IEEE International Symposium on Quality Electronic Design","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Limitations of Devices and Interconnects and Possible Alternatives for Nanoelectronics\",\"authors\":\"K. Saraswat\",\"doi\":\"10.1109/ISQED.2004.1283695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For over three decades, there has been a quadrupling of transistor density and a doubling of electrical performance every 2 to 3 years. Si transistor technology, in particular CMOS has played a pivotal role in this. It is believed that continued scaling will take the industry down to the 35-nm technology node, at the limit of the ”long-term” range of the International Technology Roadmap for Semiconductors (ITRS). However, it is also well accepted that this long-term range of the 70-nm to 35-nm nodes remains solidly in the “no-known solution” category. The difficulty in scaling the conventional MOSFET makes it prudent to search for alternative device structures. This will require new structural, material and fabrication technology solutions that are generally compatible with current and forecasted installed Semiconductor Manufacturing. In addition, new and revolutionary device concepts need to be discovered and evolved. These can be split into two categories: one is the continued used of silicon FET-type devices but with additional materials, e.g., Ge and innovative structural aspects that deviate from the classical planar/bulk MOSFET, e.g., double gate MOSFET. The second category is a set of potentially entirely different information processing and transmission devices from the transistor as we know it, e.g. silicon-based quantum-effect devices, nano-tube electronics and molecular and organic semiconductor electronics. Continuous scaling of VLSI circuits can pose significant problems for interconnects, especially for those responsible for long distance communication on a high performance chip. Our modeling predicts that the situation is worse than anticipated in the ITRS, which assumes that the resistivity of copper will not change appreciably with scaling in the future. We show that resistance of interconnect wires in light of scaling induced increase in electron surface scattering, fractional cross section area occupied by the high resistivity barrier and realistic interconnect operation temperature will lead to a significant rise in the effective resistivity of Cu. As a result both power and delay of these interconnects is likely to rise significantly in the future. In the light of various metal interconnect limitations, alternate solutions need to be pursued. We focus on two such solutions, optical interconnects and three-dimensional (3-D) ICs with multiplicative Si layers.\",\"PeriodicalId\":302936,\"journal\":{\"name\":\"IEEE International Symposium on Quality Electronic Design\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Quality Electronic Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2004.1283695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Quality Electronic Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2004.1283695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三十多年来,晶体管密度翻了两番,电性能每2到3年翻一番。硅晶体管技术,特别是CMOS在这方面发挥了举足轻重的作用。据信,继续扩大规模将使该行业降至35纳米技术节点,这是国际半导体技术路线图(ITRS)“长期”范围的极限。然而,人们也普遍认为,这种70纳米到35纳米节点的长期范围仍然是“未知解决方案”的范畴。传统MOSFET的缩放困难使得寻找替代器件结构变得谨慎。这将需要新的结构、材料和制造技术解决方案,这些解决方案通常与当前和预测的安装半导体制造兼容。此外,新的和革命性的设备概念需要被发现和发展。这些可以分为两类:一类是继续使用硅fet型器件,但使用额外的材料,例如Ge和创新的结构方面,偏离经典的平面/块状MOSFET,例如双栅MOSFET。第二类是一组可能与我们所知的晶体管完全不同的信息处理和传输设备,例如硅基量子效应设备,纳米管电子学以及分子和有机半导体电子学。VLSI电路的持续缩放可能会对互连造成重大问题,特别是对于那些负责在高性能芯片上进行长距离通信的电路。我们的模型预测,这种情况比ITRS中预测的更糟,ITRS假设铜的电阻率在未来不会随着缩放而发生明显变化。我们发现,在结垢的情况下,互连线的电阻会引起电子表面散射的增加,高电阻率势垒所占的截面面积的分数以及实际的互连操作温度将导致Cu的有效电阻率显著升高。因此,这些互连的功率和延迟在未来可能会显著上升。鉴于各种金属互连的限制,需要寻求替代解决方案。我们专注于两种这样的解决方案,光学互连和具有乘法硅层的三维(3-D)集成电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Limitations of Devices and Interconnects and Possible Alternatives for Nanoelectronics
For over three decades, there has been a quadrupling of transistor density and a doubling of electrical performance every 2 to 3 years. Si transistor technology, in particular CMOS has played a pivotal role in this. It is believed that continued scaling will take the industry down to the 35-nm technology node, at the limit of the ”long-term” range of the International Technology Roadmap for Semiconductors (ITRS). However, it is also well accepted that this long-term range of the 70-nm to 35-nm nodes remains solidly in the “no-known solution” category. The difficulty in scaling the conventional MOSFET makes it prudent to search for alternative device structures. This will require new structural, material and fabrication technology solutions that are generally compatible with current and forecasted installed Semiconductor Manufacturing. In addition, new and revolutionary device concepts need to be discovered and evolved. These can be split into two categories: one is the continued used of silicon FET-type devices but with additional materials, e.g., Ge and innovative structural aspects that deviate from the classical planar/bulk MOSFET, e.g., double gate MOSFET. The second category is a set of potentially entirely different information processing and transmission devices from the transistor as we know it, e.g. silicon-based quantum-effect devices, nano-tube electronics and molecular and organic semiconductor electronics. Continuous scaling of VLSI circuits can pose significant problems for interconnects, especially for those responsible for long distance communication on a high performance chip. Our modeling predicts that the situation is worse than anticipated in the ITRS, which assumes that the resistivity of copper will not change appreciably with scaling in the future. We show that resistance of interconnect wires in light of scaling induced increase in electron surface scattering, fractional cross section area occupied by the high resistivity barrier and realistic interconnect operation temperature will lead to a significant rise in the effective resistivity of Cu. As a result both power and delay of these interconnects is likely to rise significantly in the future. In the light of various metal interconnect limitations, alternate solutions need to be pursued. We focus on two such solutions, optical interconnects and three-dimensional (3-D) ICs with multiplicative Si layers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploiting Programmable Dipole Interaction in Straintronic Nanomagnet Chains for Ising Problems Emerging Interconnect Exploration for SRAM Application Using Nonconventional H-Tree and Center-Pin Access A2OP: an A* Algorithm OPtimizer with the Heuristic Function for PCB Automatic Routing A Bit-Parallel Deterministic Stochastic Multiplier Beyond Verilog: Evaluating Chisel versus High-level Synthesis with Tiny Designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1