基于深度学习的面部表情识别系统的开发

Heechul Jung, Sihaeng Lee, Sunjeong Park, Byungju Kim, Junmo Kim, Injae Lee, C. Ahn
{"title":"基于深度学习的面部表情识别系统的开发","authors":"Heechul Jung, Sihaeng Lee, Sunjeong Park, Byungju Kim, Junmo Kim, Injae Lee, C. Ahn","doi":"10.1109/FCV.2015.7103729","DOIUrl":null,"url":null,"abstract":"Deep learning is considered to be a breakthrough in the field of computer vision, since most of the world records of the recognition tasks are being broken. In this paper, we try to apply such deep learning techniques to recognizing facial expressions that represent human emotions. The procedure of our facial expression recognition system is as follows: First, face is detected from input image using Haar-like features. Second, the deep network is used for recognizing facial expression using detected faces. In this step, two different deep networks can be used such as deep neural network and convolutional neural network. Consequently, we compared experimentally two types of deep networks, and the convolutional neural network had better performance than deep neural network.","PeriodicalId":424974,"journal":{"name":"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Development of deep learning-based facial expression recognition system\",\"authors\":\"Heechul Jung, Sihaeng Lee, Sunjeong Park, Byungju Kim, Junmo Kim, Injae Lee, C. Ahn\",\"doi\":\"10.1109/FCV.2015.7103729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is considered to be a breakthrough in the field of computer vision, since most of the world records of the recognition tasks are being broken. In this paper, we try to apply such deep learning techniques to recognizing facial expressions that represent human emotions. The procedure of our facial expression recognition system is as follows: First, face is detected from input image using Haar-like features. Second, the deep network is used for recognizing facial expression using detected faces. In this step, two different deep networks can be used such as deep neural network and convolutional neural network. Consequently, we compared experimentally two types of deep networks, and the convolutional neural network had better performance than deep neural network.\",\"PeriodicalId\":424974,\"journal\":{\"name\":\"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCV.2015.7103729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCV.2015.7103729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

深度学习被认为是计算机视觉领域的一个突破,因为大多数识别任务的世界纪录正在被打破。在本文中,我们尝试将这种深度学习技术应用于识别代表人类情感的面部表情。我们的面部表情识别系统的流程如下:首先,使用Haar-like feature从输入图像中检测人脸。其次,利用深度网络对检测到的人脸进行表情识别。在这一步中,可以使用两种不同的深度网络,如深度神经网络和卷积神经网络。因此,我们对两种类型的深度网络进行了实验比较,发现卷积神经网络比深度神经网络具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of deep learning-based facial expression recognition system
Deep learning is considered to be a breakthrough in the field of computer vision, since most of the world records of the recognition tasks are being broken. In this paper, we try to apply such deep learning techniques to recognizing facial expressions that represent human emotions. The procedure of our facial expression recognition system is as follows: First, face is detected from input image using Haar-like features. Second, the deep network is used for recognizing facial expression using detected faces. In this step, two different deep networks can be used such as deep neural network and convolutional neural network. Consequently, we compared experimentally two types of deep networks, and the convolutional neural network had better performance than deep neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Object classification using CNN for video traffic detection system Study on performance of MPEG-7 visual descriptors for deformable object retrieval Development of deep learning-based facial expression recognition system Robust detection of mosaic masking region A system architecture for real time traffic monitoring in foggy video
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1