A. Bonerath, Benjamin Niedermann, J. Diederich, Yannick Orgeig, Johannes Oehrlein, J. Haunert
{"title":"空间密度图的时间窗数据结构","authors":"A. Bonerath, Benjamin Niedermann, J. Diederich, Yannick Orgeig, Johannes Oehrlein, J. Haunert","doi":"10.1145/3397536.3422242","DOIUrl":null,"url":null,"abstract":"The visualization of spatio-temporal data helps researchers understand global processes such as animal migration. In particular, interactively restricting the data to different time windows reveals new insights into the short-term and long-term changes of the research data. Inspired by this use case, we consider the visualization of point data annotated with time stamps. We pick up classical, grid-based density maps as the underlying visualization technique and enhance them with an efficient data structure for arbitrarily specified time-window queries. The running time of the queries is logarithmic in the total number of points and linear in the number of actually colored cells. In experiments on real-world data we show that the data structure answers time-window queries within milliseconds, which supports the interactive exploration of large point sets. Further, the data structure can be used to visualize additional decision problems, e.g., it can answer whether the sum or maximum of additional weights given with the points exceed a certain threshold. We have defined the data structure general enough to also support multiple thresholds expressed by different colors.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Time-Windowed Data Structure for Spatial Density Maps\",\"authors\":\"A. Bonerath, Benjamin Niedermann, J. Diederich, Yannick Orgeig, Johannes Oehrlein, J. Haunert\",\"doi\":\"10.1145/3397536.3422242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The visualization of spatio-temporal data helps researchers understand global processes such as animal migration. In particular, interactively restricting the data to different time windows reveals new insights into the short-term and long-term changes of the research data. Inspired by this use case, we consider the visualization of point data annotated with time stamps. We pick up classical, grid-based density maps as the underlying visualization technique and enhance them with an efficient data structure for arbitrarily specified time-window queries. The running time of the queries is logarithmic in the total number of points and linear in the number of actually colored cells. In experiments on real-world data we show that the data structure answers time-window queries within milliseconds, which supports the interactive exploration of large point sets. Further, the data structure can be used to visualize additional decision problems, e.g., it can answer whether the sum or maximum of additional weights given with the points exceed a certain threshold. We have defined the data structure general enough to also support multiple thresholds expressed by different colors.\",\"PeriodicalId\":233918,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397536.3422242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Time-Windowed Data Structure for Spatial Density Maps
The visualization of spatio-temporal data helps researchers understand global processes such as animal migration. In particular, interactively restricting the data to different time windows reveals new insights into the short-term and long-term changes of the research data. Inspired by this use case, we consider the visualization of point data annotated with time stamps. We pick up classical, grid-based density maps as the underlying visualization technique and enhance them with an efficient data structure for arbitrarily specified time-window queries. The running time of the queries is logarithmic in the total number of points and linear in the number of actually colored cells. In experiments on real-world data we show that the data structure answers time-window queries within milliseconds, which supports the interactive exploration of large point sets. Further, the data structure can be used to visualize additional decision problems, e.g., it can answer whether the sum or maximum of additional weights given with the points exceed a certain threshold. We have defined the data structure general enough to also support multiple thresholds expressed by different colors.