n阶模糊微分方程的分段逼近方法

E. Ahmady
{"title":"n阶模糊微分方程的分段逼近方法","authors":"E. Ahmady","doi":"10.5899/2015/JFSVA-00245","DOIUrl":null,"url":null,"abstract":"In this paper a numerical method for solving n-order fuzzy differential equations is considered. This method which called piecewise approximation method, is obtained by interpolating a polynomial on fuzzy determined values. The proposed method is compared to Allahviranloo's method in [6], and it is shown that this method in more accurate than Allahviranloo's method. The piecewise approximation method is illustrated by a comparative example.","PeriodicalId":308518,"journal":{"name":"Journal of Fuzzy Set Valued Analysis","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Piecewise Approximation Method for Nth-order Fuzzy Differential Equations\",\"authors\":\"E. Ahmady\",\"doi\":\"10.5899/2015/JFSVA-00245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a numerical method for solving n-order fuzzy differential equations is considered. This method which called piecewise approximation method, is obtained by interpolating a polynomial on fuzzy determined values. The proposed method is compared to Allahviranloo's method in [6], and it is shown that this method in more accurate than Allahviranloo's method. The piecewise approximation method is illustrated by a comparative example.\",\"PeriodicalId\":308518,\"journal\":{\"name\":\"Journal of Fuzzy Set Valued Analysis\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fuzzy Set Valued Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5899/2015/JFSVA-00245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuzzy Set Valued Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5899/2015/JFSVA-00245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了求解n阶模糊微分方程的一种数值方法。这种方法称为分段逼近法,是通过对模糊确定值进行多项式插值得到的。将本文提出的方法与Allahviranloo[6]的方法进行了比较,结果表明该方法比Allahviranloo的方法更精确。通过一个比较实例说明了分段逼近法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Piecewise Approximation Method for Nth-order Fuzzy Differential Equations
In this paper a numerical method for solving n-order fuzzy differential equations is considered. This method which called piecewise approximation method, is obtained by interpolating a polynomial on fuzzy determined values. The proposed method is compared to Allahviranloo's method in [6], and it is shown that this method in more accurate than Allahviranloo's method. The piecewise approximation method is illustrated by a comparative example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On fuzzy multiset regular languages Numerical Solution of Fuzzy linear Regression using Fuzzy Neural Network Based on Probability Function Fuzzy dynamical systems and Invariant attractor sets for fuzzy strongly continuous semigroups A method for solving linear programming problems with triangular fuzzy coefficients using new fuzzy ranking Convergence and stability properties Euler method for solving fuzzy Stochastic differential equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1