{"title":"pu树:一种基于分区的不确定高维索引算法","authors":"Yi Zhuang","doi":"10.1109/NSS.2010.60","DOIUrl":null,"url":null,"abstract":"This paper proposes a partition-based uncertain high-dimensional indexing algorithm, called PU-Tree. In the PU-Tree, all (n)data objects are first grouped into some clusters by a k-Means clustering algorithm. Then each object’s corresponding uncertain sphere is partitioned into several slices in terms of the zero-distance. Finally a unified key of each data object is computed by adopting multi-attribute encoding scheme, which are inserted by a B+-tree. Thus, given a query object, its probabilistic range search in high-dimensional spaces is transformed into the search in the single dimensional space with the aid of the PU-Tree. Extensive performance studies are conducted to evaluate the effectiveness and efficiency of the proposed scheme.","PeriodicalId":127173,"journal":{"name":"2010 Fourth International Conference on Network and System Security","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The PU-Tree: A Partition-Based Uncertain High-Dimensional Indexing Algorithm\",\"authors\":\"Yi Zhuang\",\"doi\":\"10.1109/NSS.2010.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a partition-based uncertain high-dimensional indexing algorithm, called PU-Tree. In the PU-Tree, all (n)data objects are first grouped into some clusters by a k-Means clustering algorithm. Then each object’s corresponding uncertain sphere is partitioned into several slices in terms of the zero-distance. Finally a unified key of each data object is computed by adopting multi-attribute encoding scheme, which are inserted by a B+-tree. Thus, given a query object, its probabilistic range search in high-dimensional spaces is transformed into the search in the single dimensional space with the aid of the PU-Tree. Extensive performance studies are conducted to evaluate the effectiveness and efficiency of the proposed scheme.\",\"PeriodicalId\":127173,\"journal\":{\"name\":\"2010 Fourth International Conference on Network and System Security\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Fourth International Conference on Network and System Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSS.2010.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fourth International Conference on Network and System Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS.2010.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The PU-Tree: A Partition-Based Uncertain High-Dimensional Indexing Algorithm
This paper proposes a partition-based uncertain high-dimensional indexing algorithm, called PU-Tree. In the PU-Tree, all (n)data objects are first grouped into some clusters by a k-Means clustering algorithm. Then each object’s corresponding uncertain sphere is partitioned into several slices in terms of the zero-distance. Finally a unified key of each data object is computed by adopting multi-attribute encoding scheme, which are inserted by a B+-tree. Thus, given a query object, its probabilistic range search in high-dimensional spaces is transformed into the search in the single dimensional space with the aid of the PU-Tree. Extensive performance studies are conducted to evaluate the effectiveness and efficiency of the proposed scheme.