鞋底:谁在什么样的地板上行走?

Denys J. C. Matthies, T. Roumen, Arjan Kuijper, B. Urban
{"title":"鞋底:谁在什么样的地板上行走?","authors":"Denys J. C. Matthies, T. Roumen, Arjan Kuijper, B. Urban","doi":"10.1145/3098279.3098545","DOIUrl":null,"url":null,"abstract":"Foot interfaces, such as pressure-sensitive insoles, still yield unused potential such as for implicit interaction. In this paper, we introduce CapSoles, enabling smart insoles to implicitly identify who is walking on what kind of floor. Our insole prototype relies on capacitive sensing and is able to sense plantar pressure distribution underneath the foot, plus a capacitive ground coupling effect. By using machine-learning algorithms, we evaluated the identification of 13 users, while walking, with a confidence of ∼95% after a recognition delay of ∼1s. Once the user's gait is known, again we can discover irregularities in gait plus a varying ground coupling. While both effects in combination are usually unique for several ground surfaces, we demonstrate to distinguish six kinds of floors, which are sand, lawn, paving stone, carpet, linoleum, and tartan with an average accuracy of ∼82%. Moreover, we demonstrate the unique effects of wet and electrostatically charged surfaces.","PeriodicalId":120153,"journal":{"name":"Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"CapSoles: who is walking on what kind of floor?\",\"authors\":\"Denys J. C. Matthies, T. Roumen, Arjan Kuijper, B. Urban\",\"doi\":\"10.1145/3098279.3098545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Foot interfaces, such as pressure-sensitive insoles, still yield unused potential such as for implicit interaction. In this paper, we introduce CapSoles, enabling smart insoles to implicitly identify who is walking on what kind of floor. Our insole prototype relies on capacitive sensing and is able to sense plantar pressure distribution underneath the foot, plus a capacitive ground coupling effect. By using machine-learning algorithms, we evaluated the identification of 13 users, while walking, with a confidence of ∼95% after a recognition delay of ∼1s. Once the user's gait is known, again we can discover irregularities in gait plus a varying ground coupling. While both effects in combination are usually unique for several ground surfaces, we demonstrate to distinguish six kinds of floors, which are sand, lawn, paving stone, carpet, linoleum, and tartan with an average accuracy of ∼82%. Moreover, we demonstrate the unique effects of wet and electrostatically charged surfaces.\",\"PeriodicalId\":120153,\"journal\":{\"name\":\"Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3098279.3098545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3098279.3098545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

足部接口,如压力敏感鞋垫,仍然产生未使用的潜力,如隐式交互。在本文中,我们介绍了capsole,使智能鞋垫能够隐式识别谁在什么样的地板上行走。我们的鞋垫原型依靠电容感应,能够感应脚底压力分布,加上电容地面耦合效应。通过使用机器学习算法,我们在行走时评估了13个用户的识别,在识别延迟~ 1s后置信度为~ 95%。一旦用户的步态已知,我们可以再次发现步态的不规则性以及变化的地面耦合。虽然这两种效果的组合通常对几种地面表面是独特的,但我们证明了区分六种地板,即沙子、草坪、铺路石、地毯、油毡和格子呢,平均准确率为82%。此外,我们还展示了湿表面和静电表面的独特效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CapSoles: who is walking on what kind of floor?
Foot interfaces, such as pressure-sensitive insoles, still yield unused potential such as for implicit interaction. In this paper, we introduce CapSoles, enabling smart insoles to implicitly identify who is walking on what kind of floor. Our insole prototype relies on capacitive sensing and is able to sense plantar pressure distribution underneath the foot, plus a capacitive ground coupling effect. By using machine-learning algorithms, we evaluated the identification of 13 users, while walking, with a confidence of ∼95% after a recognition delay of ∼1s. Once the user's gait is known, again we can discover irregularities in gait plus a varying ground coupling. While both effects in combination are usually unique for several ground surfaces, we demonstrate to distinguish six kinds of floors, which are sand, lawn, paving stone, carpet, linoleum, and tartan with an average accuracy of ∼82%. Moreover, we demonstrate the unique effects of wet and electrostatically charged surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving pocket paint usability via material design compliance and internationalization & localization support on application level CapSoles: who is walking on what kind of floor? Exploring the feasibility of subliminal priming on smartphones Visual, auditory and haptic navigation feedbacks among older pedestrians Usability of different types of commercial selfie sticks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1